求最大子序列和

个算法题——求最大子序列和
问题描述:
有一串数字(可正可负的int,放在数组Num里),要求找到起始位置start和终止位置end,使得从start位置到end位置的所有数字之和最大,返回这个最大值max。
 
最简单的方法是用动态规划算法实现:
设 f[x] 为以 a[x] 终止且包含 a[x] 的最大序列的和,有:
   f[1] = a[1];
   f[x+1] = f[x] > 0 ? f[x] + a[x+1] : a[x+1]
那么最大子序列的和就是 f[1] .. f[n] 中最大的一个。
 
算法的时间复杂度为O(n),代码实现如下:
 

void MaxSubseq_DP(int nums[], int count, int &resStart, int &resEnd, int &resMax)
{
    // 求数组nums[]中连续子序列的最大和,并标出该子序列
    // 设 f[x] 为以 a[x] 终止且包含 a[x] 的最大序列的和,有:
    //    f[1] = a[1];
    //    f[x+1] = f[x] > 0 ? f[x] + a[x+1] : a[x+1]
    // 那么最大子序列的和就是 f[1] .. f[n] 中最大的一个
    int start, max;
    int i;
    
    start = resStart = resEnd = 0; //初始化当前子序列和最大子序列为nums[0]
    max = resMax = nums[0];

    for (i = 1; i < count; ++i) {
        if (max > 0) {
            max += nums[i];
        } else {
            max = nums[i]; //抛弃当前子序列
            start = i; //开始新的子序列搜索
        }
        
        if (resMax < max) { //更新最大子序列
            resMax = max;
            resStart = start;
            resEnd = i;
        }
    }
//for

    return;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值