2021牛年·年味

博主回忆了2020年疫情初期从武汉到太原再到上海的过年经历,描述了不同地方的过年习俗和感受。文章中提到了小时候的年味,包括腊月的各种准备活动,以及现在对过年传统变化的感慨。同时,分享了在南方诸暨过年作为女婿的角色,以及对两地过年氛围的对比。文章以烤红薯的场景收尾,表达了对新年的祝愿。

还记得2020的鼠年,在回家之时就零星听到武汉爆发sars的传言,但回家心切,一路全家人没有任何防护乘高铁回到太原老家,刚到大哥家,就听到政府确认疫情的消息,于是开始了全家居家过年的生活,一开始太原还没有患者,所以还能去附近的超市商场逛逛,到现在还记得大哥知道我喜欢喝啤酒,往常家里冬天是不备啤酒的,大哥专程去超市买啤酒,不知道我喜欢喝什么牌子的,就把超市的啤酒区的啤酒每种拿一罐买回来,感动许久,虽然还记得小时候被大哥胖揍的感觉,但是大哥还是我大哥;

    随着疫情的越发严重,感觉不敢在老家多待,就在大年初三拉家带口回上海,回了上海居家隔离战战兢兢去超市采购,还记得刚到家,把家冰箱藏得发黄的青菜拿出来做面吃的味道

    疫情年过的飞快,虽然上半年居家办公,但不知不觉来到了牛年

    疫情还未走远,同时也轮到到老婆家过年,这里要解释下,茫茫中华13亿人口,可我还是跨过黄河、长江不远万里,找了浙江诸暨的姑娘做老婆,不知道月老是怎么安排的,反正我和媳妇对这个安排颇有微词,尤其每年过年去谁家这个问题上,

   牛年还是来到了老婆的老家过了

在诸暨过年,我基本上就是类似网上说的那种女婿,墙角遛狗数蚂蚁,这就是我的事情,基本这么多年诸暨话听不懂,但今年我的这个角落被这个家伙占了,没记错的话,这个地方还是一个有120多只蚂蚁的领地

 

仿佛诸暨农村的年是通过时不时的阵阵爆竹声才能表达,没有春联,没有门神,没有红灯笼,让我想到了太原的年,老婆经常说太原也没有年味,年味都去哪里了,闭上眼想想自己脑中的年味到底是什么,是小时候老妈腊月日子的安排?具体日子忘了怎么排了,就是某天是清扫院子,某天是洗澡(北方农村那时基本是没有澡堂的,要洗澡需要骑自行车到走很远的路才能到,基本为了洗澡这个事就要一天),某天是蒸馒头(因为正月里就是吃腊月屯的食物还有要进贡各种神仙需要把馒头做成各式花样),某天是包饺子,某天是包年糕,某天是贴春联(春联也是找村级书法家现作的)当然春联上也要有剪纸做的花穗,某天是腌蒜,整个腊月安排的满满当当,到了正月就是吃腊月的存粮,当然也要宴请亲朋好友,外出拜年,聚众打牌,打麻将,还有耍红火,就是村里组织大家扭秧歌、踩高跷、敲锣鼓,然后在正月十五前后给各个村企业、邻居村拜年走访,最后还去区政府游行,还有在家里制作灯笼,在正月十五村广场展出,然后请村级艺术大师(我姑父,当年艺校毕业高材生)给我们评级定奖,附近各个村庄彩车的包装也是由我姑父承接的;这些成为我儿时年的味道。

     但现在回过头想想,不正是什么样的时代过什么样的年;在这一点上确实我们的社会是奔小康了,至少我的村,现在家家户户不管车好坏,至少都有,以前要大三件,现在基本村里娶个媳妇村里有房是必须的,条件好些的城里有房也是必然的。

  来横阔的第二天,叔叔在院子里生火烤红薯,看着火光想起老家过年的旺火,借此火光祝福大家新的一年红红火火,牛气冲天,同时感谢领导发的188红包,也祝福大家188

最后再补充一句感慨,南方的冬是真的冷,老婆的可以证明

 

 

 

本项目构建于RASA开源架构之上,旨在实现一个具备多模态交互能力的智能对话系统。该系统的核心模块涵盖自然语言理解、语音转文本处理以及动态对话流程控制三个主要方面。 在自然语言理解层面,研究重点集中于增强连续对话中的用户目标判定效能,并运用深度神经网络技术提升关键信息提取的精确度。目标判定旨在解析用户话语背后的真实需求,从而生成恰当的反馈;信息提取则专注于从语音输入中析出具有特定意义的要素,例如个体名称、空间位置或时间节点等具体参数。深度神经网络的应用显著优化了这些功能的实现效果,相比经典算法,其能够解析更为复杂的语言结构,展现出更优的识别精度与更强的适应性。通过分层特征学习机制,这类模型可深入捕捉语言数据中隐含的语义关联。 语音转文本处理模块承担将音频信号转化为结构化文本的关键任务。该技术的持续演进大幅提高了人机语音交互的自然度与流畅性,使语音界面日益成为高效便捷的沟通渠道。 动态对话流程控制系统负责维持交互过程的连贯性与逻辑性,包括话轮转换、上下文关联维护以及基于情境的决策生成。该系统需具备处理各类非常规输入的能力,例如用户使用非规范表达或对系统指引产生歧义的情况。 本系统适用于多种实际应用场景,如客户服务支持、个性化事务协助及智能教学辅导等。通过准确识别用户需求并提供对应信息或操作响应,系统能够创造连贯顺畅的交互体验。借助深度学习的自适应特性,系统还可持续优化语言模式理解能力,逐步完善对新兴表达方式与用户偏好的适应机制。 在技术实施方面,RASA框架为系统开发提供了基础支撑。该框架专为构建对话式人工智能应用而设计,支持多语言环境并拥有活跃的技术社区。利用其内置工具集,开发者可高效实现复杂的对话逻辑设计与部署流程。 配套资料可能包含补充学习文档、实例分析报告或实践指导手册,有助于使用者深入掌握系统原理与应用方法。技术文档则详细说明了系统的安装步骤、参数配置及操作流程,确保用户能够顺利完成系统集成工作。项目主体代码及说明文件均存放于指定目录中,构成完整的解决方案体系。 总体而言,本项目整合了自然语言理解、语音信号处理与深度学习技术,致力于打造能够进行复杂对话管理、精准需求解析与高效信息提取的智能语音交互平台。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

石头商人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值