JAVA初学,对面向对象的一点理解

早期初略的学过一些编程语言,如Pascal,VB,VC,C++,C#,PHP,JSP,ASP之类的。这些语言在当时环境下学习的时候,更多的是考虑实现的过程。如Pascal,几乎是一种纯粹为入门和数学打造的。以前还有全国计算机竞赛,也是Pascal去解决数学问题。

 

考虑问题去实现的过程,大部分时间是在算法上去考虑,怎么实现,如何实现。一步步去推敲,直观的来说是这样的思考过程,在做一些特定的东西,会比较方便快捷,因为这样的思考有着直观的逻辑思维。像太阳在地球上永远是东升西落,这就是一种与生俱来的逻辑。缺点上呢,在打破了传统逻辑上,就显得不那么方便,你需要去更改逻辑,比如在木星上的太阳是怎么样,火星上是怎么样。写出来的代码就会变得很冗余也很复杂。而且你需要考虑更多的逻辑思考,为什么会这样又为什么会那样。

 

之前其实也学过一点java,不够深入,并没有体会到面向过程的和,面向对象的到底有什么的区别,在之前学习的过程中,无论是自己的练习,还是自己的看书学习,始终没有跳出面向过程的这个思维模式。对面向对象还有一点懵懵懂懂。昨天,胡老师在课堂上,仔细详细的讲解了一下面向对象的思维,让我有一种醍醐灌顶的感觉。对之前的所学进行了一次新的领悟。对面向对象的思考方式有了一种自己的清醒的认知。虽然还不敢说自己懂了,但是自己似乎是已经明白了。

 

在思考的时候,不会在拘束于首先思考如何去解决他,而是会在思考的时候,首先思考的是,怎么去认识他。当然,同样的事情需要从不同的角度去看,并非是单纯的只从某个方面去看,这样你对这个事情的认知,会更有益的帮助你去完成他,完善他。

 

我对面向过程的看法是,一个项目一个问题,出发点是how to solve。然后在这个的基础上,向外衍生,由内向外。优势确实是如书上所说,在熟知的领域,这样做很方便,因为你不需要考虑额外的东西,而是考虑去完善一个已有的东西。缺点也是很明显,有不明白的新事物进来的时候,就要层层考虑相互之间的关系,是不是要在代码上改变什么。

 

而面相对象这种方式,彷如开启了一扇大门。他出发点不再是how to solve。而是what is object?如抽丝剥茧,把一个事物,层层剥开,然后对剥开的每一样东西,每一样东西拥有的属性和行为,归纳,总结。然后把他们作为一个零件,一个个写出代码,在一个大的框架下,把他们组合在一起,成为一个总体。

 

这两种方法,谈不上谁更胜一筹,因为他们的目的最终都是去解决一个问题、一个项目。因为出发点不一样,思考的方式不一样,在应用起来,不单单是只推崇某一种,而是用这种思维方式,去拓展你的思维方式,不拘束在某一点上。

 

这就是我在学习JAVA基础中,对JAVA的一些自己的见解。

【6层】一字型框架办公楼(含建筑结构图、计算书) 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
1、资源项目源码均已通过严格测试验证,保证能够正常运行;、 2项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值