POJ 2481Cows 树状数组

/*
参考:http://hi.baidu.com/acfordream/blog/item/64b1527f7a5398f90ad187f6.html
	
这个题大概是计算,一个区间会被多少区间覆盖的问题:

标准做法:套用别人写的

给定 n 个区间 (l, r),问每个区间被多少个另外的区间所包含。
包含的定义 (l1, r1), (l2, r2),如果 l1 <= l2 < r2 <= r1 && (l1, r1) != (l2, r2),则 (l1, r1) 包含 (l2, r2)。

用节点存储区间,然后给节点排序。l 小的区间放在前面,l 相同则 r 大的区间放在前面。
为什么这样排序呢?因为对排序之后的节点,节点 n 只可能被排在它前面的 (0 —— n-1) 号节点包含,而不可能被后面的包含。
那么(0——n-1) 号节点中,又哪些能包含节点 n 呢?只要 ri >= rn 即可。(因为 li <= ln的)。, r),问每个区间被多少个另外的区间所包含。
包含的定义 (l1, r1), (l2, r2),如果 l1 <= l2 < r2 <= r1 && (l1, r1) != (l2, r2),则 (l1, r1) 包含 (l2, r2)。

用节点存储区间,然后给节点排序。l 小的区间放在前面,l 相同则 r 大的区间放在前面。
为什么这样排序呢?因为对排序之后的节点,节点 n 只可能被排在它前面的 (0 —— n-1) 号节点包含,而不可能被后面的包含。
那么(0——n-1) 号节点中,又哪些能包含节点 n 呢?只要 ri >= rn 即可。(因为 li <= ln的)。
*/
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
using namespace std;
const int N=100009;
struct inv
{
 int u,v,num;
}Cow[N];
int cnt[N],Max;
bool cmp(inv x,inv y)
{
	if(x.v!=y.v)return x.v>y.v;
	return x.u<y.u;
}

int ar[N];
int lowb(int t){return t&(-t);}

void add(int i,int v)
{
	for(;i<N;ar[i]+=v,i+=lowb(i));
}
int sum(int i)
{
	int s=0;
	for(;i>0;s+=ar[i],i-=lowb(i));
    return s;  
}
int main()
{
	int n,x,y;
	while(scanf("%d",&n),n)
	{
		memset(ar,0,sizeof(ar));
		Max=-1;
		for(int i=0;i<n;i++)
		{
			scanf("%d%d",&x,&y);
			Cow[i].u=++x;
			Cow[i].v=++y;
			if(y>Max)Max=y;
			Cow[i].num=i;
		}
		sort(Cow,Cow+n,cmp);
		for(int i=0;i<n;i++)
		{
			if(i>0&&Cow[i].u==Cow[i-1].u&&Cow[i].v==Cow[i-1].v)
			cnt[Cow[i].num]=cnt[Cow[i-1].num];
			else 
			{
			cnt[Cow[i].num]=sum(Cow[i].u);
			}
			add(Cow[i].u,1);
		}
		for(int i=0;i<n-1;i++)
		printf("%d ",cnt[i]);
		printf("%d\n",cnt[n-1]);
	}
}

//第二种方式:区间后边界排序

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;

#define N 100001

struct Node{
    int s,e,index;
}node[100001];

int res[N];

int s1[100001];

bool cmp(const Node &a, const Node &b){
    if(a.s==b.s) return a.e>b.e;
    else return a.s<b.s;
}

int lowbit(int key){
    return key&(-key);
}

void add1(int index,int key){
    for(int i=index; i<=N; i+=lowbit(i)){
        s1[i]+=key;
    }
}

int getsum1(int index){
    int ans=0;
    for(int i=index; i>0; i-=lowbit(i)){
        ans+=s1[i];
    }
    return ans;
}


int main(){
    int n;
    while(scanf("%d",&n)&&n){
        for(int i=0; i<n; i++){
            scanf("%d%d",&node[i].s,&node[i].e);
            node[i].index=i;
        }
        sort(node, node+n, cmp);
       
       memset(s1,0,sizeof(s1)); //初始化
        memset(res,0,sizeof(res));
       
        res[node[0].index]=0;
        add1(node[0].e,1);
        int mmax = node[0].e;
        for(int i=1; i<n; i++){
            if(node[i].e==node[i-1].e&&node[i].s==node[i-1].s){
                res[node[i].index]=res[node[i-1].index];
                add1(node[i].e,1); //将节点压入栈中
                continue;
            }
            res[node[i].index] = getsum1(mmax) - getsum1(node[i].e-1);
            add1(node[i].e,1);
            if(node[i].e>mmax) mmax = node[i].e;
        }
       
        printf("%d",res[0]);
        for(int i=1; i<n; i++){
            printf(" %d",res[i]);
        }
        printf("\n");
    }
    return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
POJ 2182是一道使用树状数组解决的题目,题目要求对给定的n个数进行排序,并且输出每个数在排序后的相对位置。树状数组是一种用来高效处理前缀和问题的数据结构。 根据引用中的描述,我们可以通过遍历数组a,对于每个元素a[i],可以使用二分查找找到a到a[i-1]中小于a[i]的数的个数。这个个数就是它在排序后的相对位置。 代码中的query函数用来求前缀和,add函数用来更新树状数组。在主函数中,我们从后往前遍历数组a,通过二分查找找到每个元素在排序后的相对位置,并将结果存入ans数组中。 最后,我们按顺序输出ans数组的元素即可得到排序后的相对位置。 参考代码如下: ```C++ #include <iostream> #include <cstdio> using namespace std; int n, a += y; } } int main() { scanf("%d", &n); f = 1; for (int i = 2; i <= n; i++) { scanf("%d", &a[i]); f[i = i & -i; } for (int i = n; i >= 1; i--) { int l = 1, r = n; while (l <= r) { int mid = (l + r) / 2; int k = query(mid - 1); if (a[i > k) { l = mid + 1; } else if (a[i < k) { r = mid - 1; } else { while (b[mid]) { mid++; } ans[i = mid; b[mid = true; add(mid, -1); break; } } } for (int i = 1; i <= n; i++) { printf("%d\n", ans[i]); } return 0; } ``` 这段代码使用了树状数组来完成题目要求的排序功能,其中query函数用来求前缀和,add函数用来更新树状数组。在主函数中,我们从后往前遍历数组a,通过二分查找找到每个元素在排序后的相对位置,并将结果存入ans数组中。最后,我们按顺序输出ans数组的元素即可得到排序后的相对位置。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [poj2182Lost Cows——树状数组快速查找](https://blog.csdn.net/aodan5477/article/details/102045839)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* [poj_2182 线段树/树状数组](https://blog.csdn.net/weixin_34138139/article/details/86389799)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值