目录
1 简介
python在科学计算领域有三个非常受欢迎库,numpy、SciPy、matplotlib。numpy定义了数值数组和矩阵类型和它们的基本运算的语言扩展,是一个高性能的多维数组的计算库。
SciPy使用NumPy来做高等数学、信号处理、优化、统计和许多其它科学任务的语言扩展。是构建在numpy的基础之上的。SciPy是一款方便、易于使用、专为科学和工程设计的python工具包,它包括了统计、优化、整合以及线性代数模块、傅里叶变换、信号和图像图例,常微分方差的求解等。Scipy的optimize模块提供了许多数值优化算法。
Matplotlib是一个帮助绘图的语言扩展。
2 SciPy的optimize模块
optimize模块提供了几种常用的优化算法, 可以实现非线性方程组求解、数据拟合及函数最小值。包含以下几个方面 :
a 使用(例如:BFGS,Nelder-Mead单纯形等)的无约束和约束最小化多元标量函数(minimize()
);
b 全局优化程序(anneal()
,basinhopping()
);
c 最小二乘最小化(leastsq()
)和曲线拟合(curve_fit()
);
d 标量单变量函数最小化(minim_scalar()
)和根查找(newton()
);
e 使用(例如:Powell,Levenberg-Marquardt混合或Newton-Krylov等大规模方法)的多元方程系统求解.
1. 最小二乘拟合
举例:有一组数据满足函数关系f(x)=kx+b,想要求解出k和b的值。
x | 8.1 | 2.7 | 6.99 | 4.1 | 5.8 | 10.7 | 15.66 | 20.1 | 25 |
y | 7.22 | 2.67 | 7 | 3.9 | 6.11 | 11 | 15.5 | 20.0 | 25.3 |
代码 :
import numpy as np
from scipy.optimize import leastsq
import matplotlib.pyplot as plt
def f(param):
k, b = param
return (Y-(k * X + b))
if __name__ == '__main__':
X = np.array([8.1, 2.7, 6.99, 4.1, 5.8, 10.7, 15.66, 20.1, 25])
Y = np.array([7.22, 2.67, 7, 3.9, 6.11, 11, 15.5, 20.0, 25.3])
# 参数初始值为1,0
r = leastsq(f, [1, 0])
k, b = r[0]
# 展示结果
plt.scatter(X, Y, linewidths=1, marker='*', s=100, c='r')
plt.plot(X, k * X + b, color='g')
plt.show()
pass
结果:
2. 非线性方程组求解
optimize库中的fsolve函数:fsolve(func, x0)。其中,func(x)是计算误差的函数, x是矢量,为各个未知数的一组可能的解。x0为未知矢量的初始值。
举例:
代码:
from scipy.optimize import fsolve
from math import sin
def func(x):
x0, x1, x2 = x.tolist()
return[2*x1+6, 4*x0 - 3*sin(x2), x1*x2-2]
if __name__ == '__main__':
re = fsolve(func, [0, 0, 0])
print(re)
print(func(re))
pass
结果:
3 SciPy在图像处理方面的应用
1 图像操作
原图:
代码:
from scipy.misc import imread, imsave, imresize
if __name__ == "__main__":
img = imread("1.jpg")
print(img.dtype)
print(img.shape)
img_resize = imresize(img, (250, 250))
print(img_resize.shape)
imsave("resize.png", img_resize)
pass
结果: