初识SciPy

目录

1 简介

2  SciPy的optimize模块

3  SciPy在图像处理方面的应用

1 简介

python在科学计算领域有三个非常受欢迎库,numpy、SciPy、matplotlib。numpy定义了数值数组和矩阵类型和它们的基本运算的语言扩展是一个高性能的多维数组的计算库。

SciPy使用NumPy来做高等数学、信号处理、优化、统计和许多其它科学任务的语言扩展。是构建在numpy的基础之上的。SciPy是一款方便、易于使用、专为科学和工程设计的python工具包,它包括了统计、优化、整合以及线性代数模块、傅里叶变换、信号和图像图例,常微分方差的求解等。Scipy的optimize模块提供了许多数值优化算法

Matplotlib是一个帮助绘图的语言扩展。

2  SciPy的optimize模块

optimize模块提供了几种常用的优化算法, 可以实现非线性方程组求解、数据拟合及函数最小值。包含以下几个方面 :

a 使用(例如:BFGS,Nelder-Mead单纯形等)的无约束和约束最小化多元标量函数(minimize());

b 全局优化程序(anneal()basinhopping());

c 最小二乘最小化(leastsq())和曲线拟合(curve_fit());

d 标量单变量函数最小化(minim_scalar())和根查找(newton());

e 使用(例如:Powell,Levenberg-Marquardt混合或Newton-Krylov等大规模方法)的多元方程系统求解.

1. 最小二乘拟合

     举例:有一组数据满足函数关系f(x)=kx+b,想要求解出k和b的值。

x

8.1

2.7

6.99

4.1

5.8

10.7

15.66

20.1

25

y

7.22

2.67

7

3.9

6.11

11

15.5

20.0

25.3

    代码 :

import numpy as np
from scipy.optimize import leastsq
import matplotlib.pyplot as plt


def f(param):
    k, b = param
    return (Y-(k * X + b))


if __name__ == '__main__':
    X = np.array([8.1, 2.7, 6.99, 4.1, 5.8, 10.7, 15.66, 20.1, 25])
    Y = np.array([7.22, 2.67, 7, 3.9, 6.11, 11, 15.5, 20.0, 25.3])
    # 参数初始值为1,0
    r = leastsq(f, [1, 0])
    k, b = r[0]

    # 展示结果
    plt.scatter(X, Y, linewidths=1, marker='*', s=100, c='r')
    plt.plot(X, k * X + b, color='g')
    plt.show()
    pass

   结果:

2.  非线性方程组求解

   optimize库中的fsolve函数:fsolve(func, x0)。其中,func(x)是计算误差的函数, x是矢量,为各个未知数的一组可能的解。x0为未知矢量的初始值。

  举例:

  代码:

from scipy.optimize import fsolve
from math import sin


def func(x):
    x0, x1, x2 = x.tolist()
    return[2*x1+6, 4*x0 - 3*sin(x2), x1*x2-2]


if __name__ == '__main__':
    re = fsolve(func, [0, 0, 0])
    print(re)
    print(func(re))
    pass

  结果:

 SciPy在图像处理方面的应用

1 图像操作

  原图:

  代码:

from scipy.misc import imread, imsave, imresize

if __name__ == "__main__":
    img = imread("1.jpg")
    print(img.dtype)
    print(img.shape)
    img_resize = imresize(img, (250, 250))
    print(img_resize.shape)
    imsave("resize.png", img_resize)
    pass

    结果:

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jackilina_Stone

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值