【大模型】Qwen2.5-VL-3B-Instruct转换为ONNX模型,并用ONNX Runtime推理实践

【源码免费下载链接】:https://renmaiwang.cn/s/2gdnj 《R语言数据挖掘方法及应用》由薛薇编写而成的一本系统阐述R语言在数据挖掘领域前沿技术的著作。该书旨在指导读者学会使用R语言进行高效、实用的数据分析与建模工作,涵盖了从理论基础到实践操作的全过程。作为一款功能强大且开源的统计计算和图形处理平台,R语言凭借其丰富的工具库和社区支持,在数据分析与可视化方面展现出显著优势。在数据挖掘领域,R语言提供了包括`caret`、`randomForest`、`tm`、`e1071`等广泛使用的专用包,这些工具能够帮助用户更便捷地进行数据预处理、特征选择、模型构建和结果评估。全书首先介绍R语言的基本知识体系,涵盖环境配置与安装方法、基础语法规范以及常见数据类型分析等内容。这些基础知识是开展后续数据分析工作的必备技能,通过学习可以快速掌握R语言的核心功能。随后章节深入讲解了数据挖掘的主要概念与流程,包括数据清洗、转换整理和探索性分析等环节,同时详细阐述了分类、聚类、关联规则挖掘及预测等多种典型任务的具体实施方法。这些内容有助于读者全面理解数据挖掘的整体架构及其核心工作步骤。在应用实践部分,薛薇老师结合真实案例展示了R语言在实际业务场景中的具体运用,例如市场细分分析、客户流失预测以及个性化推荐系统等。通过这些案例研究,读者可以深入学习如何利用相关工具包解决实际问题,并提升数据分析能力。此外,书中配套的“案例数据集”和“代码资源”为读者提供了实践操作的机会,使理论知识能够更好地转化为动手技能。通过实际操作分析,读者可以加深对R语言数据挖掘方法的理解并灵活运用。总之,《R语言数据挖掘方法及应用》是一部全面讲解R语言在数据分析与建模领域的教材,无论你是刚开始学习的新人还是经验丰富的专业人士,都能从中获益匪浅。通过深入研读此书,你可以掌握R语言的数据挖掘技巧,并将其应用到实
内容概要:本文提出了一种基于改进粒子滤波算法的无人机三维航迹预测方法,并通过Matlab代码实现仿真验证。该方法针对传统粒子滤波在无人机轨迹预测中存在的粒子退化和计算复杂度高等问题,引入优化策略提升滤波精度与效率,有效提高了对无人机运动轨迹的非线性、非高斯环境下的预测能力。文中详细阐述了算法原理、模型构建流程及关键步骤,包括状态转移建模、观测方程设计、重采样优化等,并结合三维空间中的实际飞行轨迹进行仿真实验,验证了所提方法相较于标准粒子滤波在位置预测误差和收敛速度方面的优越性。; 适合人群:具备一定信号处理、导航估计算法基础,熟悉Matlab编程,从事无人系统、智能交通、航空航天等相关领域研究的研究生或科研人员; 使用场景及目标:①应用于无人机实时轨迹预测与状态估计系统中,提升飞行安全性与自主性;②为复杂环境下非线性动态系统的建模与滤波算法研究提供技术参考;③【预测】改进粒子滤波的无人机三维航迹预测方法(Matlab代码实现)支持后续扩展至多无人机协同跟踪与避障系统的设计与仿真; 阅读建议:建议结合Matlab代码逐模块分析算法实现细节,重点关注粒子滤波的改进机制与三维可视化结果对比,同时可尝试替换不同运动模型或噪声条件以深入理解算法鲁棒性。
<think>好的,我现在需要解决用户的问题:在内网环境下启动本地的Qwen2.5-VL-32B-Instruct模型,并通过Dify工具调用Python服务。首先,我需要理清整个流程的步骤,确保每一步都正确无误,并且考虑到内网环境的限制。 用户提到之前尝试过使用ollama和llama.cpp转换模型但未成功,现在转向Docker部署。参考提供的资料,用户已经安装了NVIDIA驱动、CUDA 12.4,并且有双RTX 4090显卡。这些信息很重要,因为模型运行需要GPU支持,特别是大模型需要足够显存。 首先,我需要确认如何在Docker中正确配置环境。用户提供的参考链接中有关于Docker安装和运行vLLM的内容,但用户可能遇到了环境复杂的问题。因此,可能需要使用预配置的Docker镜像,或者自行构建包含必要依赖的镜像。 接下来,模型加载部分。Qwen2.5-VL-32B-Instruct是一个较大的模型,需要足够的GPU显存。双RTX 4090(24G x2)共有48G显存,应该足够加载32B的模型,但需要确认模型是否支持模型并行或数据并行,以便在多个GPU上分配计算。 然后,Python服务的搭建。用户需要通过Dify调用模型,所以需要创建一个API服务,可能是基于HTTP的,比如使用FastAPI框架。需要编写一个Python脚本,使用Hugging Face的transformers库加载模型,并处理请求。 另外,内网环境意味着无法从外部下载模型,所以需要提前将模型文件下载到内网服务器,并在Docker容器中挂载相应的目录。需要确保模型文件的路径正确,并且权限设置合适。 还要考虑Dify的集成。Dify需要能够访问这个API服务的端点,可能需要配置网络,确保Docker容器暴露的端口在内网中可访问。可能需要设置端口映射,比如将容器内的8000端口映射到宿主机的某个端口。 可能的难点包括:Docker镜像的构建是否正确包含CUDA和必要的Python库;模型加载时的显存分配问题;API服务的稳定性和性能;以及Dify配置是否正确指向本地服务。 需要检查的步骤包括:安装NVIDIA Docker支持,构建或获取合适的Docker镜像,下载模型文件,编写API服务代码,配置Docker运行参数,测试API服务,最后在Dify中设置自定义模型接口。 可能遇到的问题:模型加载失败,显存不足,依赖库版本冲突,网络端口不通,Dify无法识别API格式等。需要逐一排查,例如通过日志查看错误信息,测试API端点是否响应,检查Dify的集成配置是否符合要求。 总结来说,步骤大致是:准备模型文件 -> 配置Docker环境 -> 编写API服务 -> 运行容器 -> 集成到Dify。需要确保每一步都正确执行,特别是在内网环境下,所有依赖都需要本地解决。</think>根据你的需求,我将分步骤说明如何在内网部署Qwen2.5-VL-32B-Instruct模型并通过Dify集成: ### 一、环境准备 1. **Docker环境配置** - 安装NVIDIA Container Toolkit: ```bash distribution=$(. /etc/os-release;echo $ID$VERSION_ID) curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.repo | sudo tee /etc/yum.repos.d/nvidia-docker.repo sudo yum install -y nvidia-container-toolkit ``` - 验证安装:`docker run --gpus all nvidia/cuda:12.4.0-base-ubi7 nvidia-smi` 2. **模型文件准备** - 在外网下载模型文件: ```python from huggingface_hub import snapshot_download snapshot_download(repo_id="Qwen/Qwen2.5-VL-32B-Instruct", local_dir="./qwen2.5-vl-32b") ``` - 将整个目录打包传输到内网服务器(需至少150GB存储空间) ### 二、Docker容器部署 1. **编写Dockerfile** ```dockerfile FROM nvidia/cuda:12.4.0-runtime-ubi7 RUN yum install -y python3.9 && \ pip3 install torch==2.3.0 transformers==4.40.0 fastapi uvicorn WORKDIR /app COPY . . ``` 2. **构建镜像** ```bash docker build -t qwen-api:1.0 . ``` ### 三、模型服务部署 1. **编写API服务(server.py)** ```python from fastapi import FastAPI from transformers import AutoModelForCausalLM, AutoTokenizer app = FastAPI() model = AutoModelForCausalLM.from_pretrained( "/app/models/Qwen2.5-VL-32B-Instruct", device_map="auto", torch_dtype="auto" ) tokenizer = AutoTokenizer.from_pretrained("/app/models/Qwen2.5-VL-32B-Instruct") @app.post("/generate") async def generate(prompt: str): inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens=512) return {"response": tokenizer.decode(outputs[0])} ``` 2. **启动容器** ```bash docker run -d --gpus all -p 8000:8000 \ -v /path/to/qwen2.5-vl-32b:/app/models/Qwen2.5-VL-32B-Instruct \ qwen-api:1.0 uvicorn server:app --host 0.0.0.0 --port 8000 ``` ### 四、Dify集成配置 1. **在Dify中创建自定义模型** - 进入「模型供应商」→「自定义模型- 配置参数: ```yaml API端点: http://[内网IP]:8000/generate 请求格式: JSON 参数映射: prompt -> {{inputs}} ``` 2. **测试调用** ```python import requests response = requests.post("http://localhost:8000/generate", json={"prompt": "描述这张图片的内容:[IMAGE]"}) print(response.json()) ``` ### 五、性能优化建议 1. 使用vLLM加速推理: ```bash docker run --gpus all -p 8000:8000 \ -v /path/to/model:/app/model \ vllm/vllm-openai:latest \ --model /app/model \ --tensor-parallel-size 2 ``` 需要转换模型格式为vLLM兼容格式[^2] 2. 使用量化技术减少显存占用: ```python model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", load_in_4bit=True, # 使用4bit量化 bnb_4bit_compute_dtype=torch.float16 ) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jackilina_Stone

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值