这些库和数据格式在数据科学和机器学习领域都发挥着重要作用,根据具体的任务和需求选择合适的工具能够提高工作效率和质量。
数据处理与分析类
- pandas:这是数据处理和分析中极为重要的库,它提供了丰富的数据结构(如 DataFrame 和 Series)以及强大的数据操作功能,能够高效地进行数据清洗、转换、聚合等操作,是数据分析流程中的核心工具。
- Pandas - Profiling:该库可以自动生成数据报告,通过对数据进行快速扫描和分析,输出详细的报告,涵盖数据的基本信息、缺失值情况、相关性分析等内容,有助于快速了解数据的整体状况。
数值计算类
- NumPy:作为数值计算的基础库,NumPy 提供了高效的多维数组对象以及各种数学函数,是许多科学计算和数据分析任务的基础,其他库(如 pandas)在底层也依赖于 NumPy 进行数值计算。
- SciPy:它是一个功能强大的科学计算库,在 NumPy 的基础上进一步扩展,提供了优化、插值、积分、线性代数等多种科学计算功能,可用于解决各种复杂的