Transformer架构的变体,如Dense、MoE(Mixture of Experts)和Hybrid-MoE,各有其特点,适用于不同的场景。
下面是对这三种架构的一个优劣分析,选择哪种架构取决于具体的应用需求、可用的计算资源以及对模型性能的要求。Dense架构适合那些希望快速开发和部署的小型项目;而MoE及其变种则更适合于追求极致参数效率的大规模应用场景,在这种情况下,尽管存在额外的复杂性和潜在的训练难题,但它们提供了更高的灵活性和扩展性。Hybrid-MoE则是介于两者之间的一种折衷方案,适用于需要平衡各方面因素的情况。
一、Dense Transformer
1.1 优点
- 一致性:所有输入数据都通过相同的神经网络层处理,这保证了模型的一致性和稳定性。
- 易于训练:由于参数是全局共享的,因此训练过程相对简单且收敛速度快。
- 性能优化:可以充分利用硬件加速器(如GPU或TPU),因为所有计算都是密集型的。
1.2 缺点
- 参数效率低