机器学习快速入门 第二阶段:高级学习算法(2)

机器学习第二阶段的高级学习算法课程包含58节,我将其分为九个部分,分为两个阶段来讲;
今天我们来讲第二部分,包含分类问题、模型的评估与选择、模型的优化与迭代、机器学习的伦理与公平性问题、以及最后的决策树与集成学习

下面是第二部分的目录:

目录:

分类问题和Softmax

  1. 多类 - 讲解了神经网络如何处理多类分类问题。
  2. Softmax - 介绍了Softmax函数及其在多类分类中的应用。
  3. 神经网络的Softmax输出 - 详细解释了如何在神经网络中实现Softmax输出层。
  4. softmax的改进实现 - 讨论了如何改进Softmax的实现。

模型评估与选择

  1. 模型评估 - 讲解了如何评估机器学习模型的性能。
  2. 模型选择和训练交叉验证测试集 - 讲解了如何使用交叉验证来选择模型和调整参数。
  3. 诊断偏差和方差 - 解释了如何诊断模型的偏差和方差问题。
  4. 正则化和偏差或方差 - 讨论了正则化如何帮助减少过拟合(高方差)。
  5. 建立表现基准 - 讲解了如何建立模型性能的基准。

模型优化和迭代改进

  1. 学习曲线 - 介绍了如何使用学习曲线来指导模型改进。
  2. 再次决定下一步做什么 - 讲解了如何根据模型表现决定后续的行动。
  3. 偏差或方差与神经网络 - 讨论了神经网络在处理偏差和方差方面的特性。
  4. 机器学习的迭代发展 - 强调了机器学习项目的迭代本质。
  5. 误差分析 - 讲解了如何进行误差分析来指导模型改进。
  6. 添加数据 - 讨论了增加数据量对模型性能的影响。
  7. 迁移学习:使用其他任务中的数据 - 介绍了迁移学习的概念及其应用。

机器学习的伦理与公平性

  1. 机器学习项目的完整周期 - 概述了机器学习项目从开始到结束的整个流程。
  2. 公平、偏见与伦理 - 讨论了在机器学习中处理公平性、偏见和伦理问题的重要性。
  3. 倾斜数据集的误差指标 - 分析了数据集偏差对误差指标的影响。
  4. 精确率与召回率的权衡 - 讲解了精确率和召回率之间的权衡。

决策树与集成学习

  1. 决策树模型 - 介绍了决策树模型及其工作原理。
  2. 学习过程 - 讲解了决策树的学习过程。
  3. 测量纯度 - 解释了如何测量决策树中节点的纯度。
  4. 选择拆分信息增益 - 讲解了如何使用信息增益来选择最佳拆分。
  5. 整合 - 讨论了如何将多个模型整合在一起。
  6. 使用分类特征的一种独热编码(One-Hot) - 介绍了如何使用独热编码处理分类特征。
  7. 连续的有价值特征 - 讲解了如何处理连续特征。
  8. 使用多个决策树 - 解释了如何结合多个决策树来提高模型性能。
  9. 放回抽样 - 讲解了放回抽样的概念及其在集成学习中的应用。
  10. 随机森林算法 - 详细介绍了随机森林算法。
  11. XGBoost - 讲解了XGBoost算法及其在竞赛和实际应用中的重要性。
  12. 什么时候使用决策树 - 讨论了在何种情况下选择使用决策树模型。

分类问题和Softmax

解决多类分类问题,重点为如何利用Softmax函数在神经网络中实现这一目标。

1. 多类分类问题

多类分类是指将输入数据分类到多于两个类别中的一种问题,这在机器学习中非常常见。与二分类问题不同,多类分类问题需要网络能够输出多个类别的概率,以确定输入最有可能属于哪个类别。处理这类问题时,神经网络的输出层需要有与类别数量相等的节点数,每个节点对应一个类别的预测概率。

2. Softmax函数

Softmax函数是多类分类问题中的关键,它可以将神经网络输出层的原始值(也称为logits)转换为概率分布。具体来说,Softmax函数会对每个输出节点的原始输出值进行指数化(确保所有输出为正数),然后将它们归一化(使得所有输出值的和为1)。因此,Softmax输出可以被解释为一个概率分布,反映了输入属于每个类别的相对概率。

3. 神经网络的Softmax输出

在神经网络中实现Softmax输出层涉及到在网络的最后一层使用Softmax函数。对于多类分类问题,通常将网络的最后一层设计为与类别数量相同的节点数,并将Softmax函数应用于这些节点的输出。这样,网络的输出可以直接解释为输入属于每个类别的概率。

4. Softmax的改进实现

尽管Softmax函数非常有效,但在某些情况下可能需要进行改进或调整,以提高数值稳定性或解决特定的问题。一个常见的改进是在计算指数时从每个logit中减去最大logit值,以避免因数值过大导致的数值不稳定。此外,还有一些变体如温度Softmax,通过引入一个温度参数来调节概率分布的“平滑度”,这在某些情况下(如知识蒸馏)可以提供额外的灵活性。

通过理解和掌握如何在神经网络中应用Softmax函数及其变体,可以有效地解决多类分类问题,使得神经网络能够在广泛的应用中发挥作用,从图像识别到文本分类等等。


问题:

什么是温度Softmax?

就是用个函数,通过调节参数使得多类别之间的概率差异较小(谨慎),或者因模型的自信而增加分类间差异


模型评估与选择:

机器学习模型的评估和选择过程,以及如何通过不同的技术和策略来优化模型的性能。

1. 模型评估

模型评估是衡量和比较不同机器学习模型性能的过程。这通常涉及到使用一系列评估指标,如准确率、精确率、召回率、F1分数等,来量化模型在特定任务上的表现。评估过程可能还会包括混淆矩阵的分析,以及接收者操作特征(ROC)曲线和曲线下面积(AUC)等指标,特别是在分类任务中。

2. 模型选择和交叉验证

模型选择是在多个模型或配置中选择最佳模型的过程。由于单一的数据划分可能导致评估结果的偶然性,因此通常采用交叉验证技术来更可靠地评估模型性能。交叉验证通过将数据分为多个子集,在这些子集上轮流训练和验证模型,然后平均得到的性能指标,从而减少评估过程中的偶然性和偏差。

3. 诊断偏差和方差

理解模型的偏差(Bias)和方差(Variance)对于提高模型性能至关重要。高偏差通常意味着模型欠拟合,即模型过于简单,不能捕获数据的基本模式。高方差则意味着模型过拟合,即模型过于复杂,捕获了太多的噪声。通过图形分析、学习曲线等方法,可以诊断模型是否存在偏差或方差问题,并据此调整模型的复杂度。

4. 正则化和偏差或方差

正则化是一种用于减少模型过拟合(高方差)的技术。它通过向损失函数中添加一个惩罚项(如L1或L2正则化项)来限制模型参数的大小,从而使模型更加简单、更不容易过拟合。正则化可以有效平衡模型的偏差和方差,提高模型的泛化能力。

5. 建立表现基准

在开始模型训练和优化之前,建立一个基准性能非常重要。这可以是先前模型的性能、行业标准或简单模型(如随机分类器)的性能。基准提供了一个参考点,用于评估新模型的改进是否显著,以及优化的方向是否正确。基准也有助于管理期望,并为项目的最终目标设定实际的基线。

通过精通这些模型评估与选择的策略和技术,可以显著提升机器学习项目的成功率,确保模型不仅在训练集上表现良好,而且在未见过的数据上也能保持稳定的性能。


问题:

什么是 接收者操作特征(ROC)曲线?

接收者操作特征(ROC)曲线是评估二分类模型性能的工具,通过绘制不同阈值下的真正率(TPR)与假正率(FPR),展示模型识别正例能力与误报负例的比例。ROC曲线下的面积(AUC)量化了模型的整体性能,AUC值越接近1,模型性能越佳。


机器学习中的偏差和方差:

机器学习模型中的偏差和方差trade-off反映了模型在学习能力和泛化能力之间的平衡:偏差过高导致欠拟合,无法很好捕捉数据细节;方差过高导致过拟合,模型将训练数据的噪音也学习并泛化了。我们需要通过调节模型复杂度、特征数量、训练数据质量、正则化等手段,在偏差和方差之间寻求一个合适的trade-off,使模型兼顾学习能力和泛化性能。


为什么需要平衡模型的偏差和方差?正则化起到了什么作用?

机器学习模型面临欠拟合和过拟合两个风险。欠拟合(高偏差)意味着模型过于简单,无法有效捕捉数据内在规律;过拟合(高方差)则意味着模型过于复杂,将训练数据的噪音也学习并泛化了。我们需要平衡模型的学习能力和泛化能力,在偏差和方差之间寻求合适的trade-off。

正则化技术通过在损失函数中加入惩罚项或引入噪声,限制了模型的复杂度,降低了模型的方差,从而减轻了过拟合的风险。适度的正则化一方面避免了模型过于简单导致高偏差,同时又控制了模型的方差,帮助获得一个良好的偏差-方差平衡,构建出在训练数据和测试数据上均表现良好的机器学习模型。


模型优化和迭代改进:

如何通过各种策略和技术优化机器学习模型,并在实践中不断地迭代和改进

1. 学习曲线

学习曲线是一种图形工具,展示了模型在训练集和验证集上的表现随训练过程中数据量或训练轮次的变化情况。通过分析学习曲线,可以识别模型是否存在过拟合(训练误差小但验证误差大)或欠拟合(训练误差和验证误差都较大且相近),从而指导如何调整模型复杂度或增加更多训练数据。

2. 再次决定下一步做什么

基于模型的当前性能和学习曲线的分析,决定下一步的行动。这可能包括调整模型结构、改变学习率、应用不同的优化算法、增加更多数据或使用正则化等技术来改善模型的表现。

3. 偏差或方差与神经网络

在优化神经网络时,理解模型的偏差(Bias)和方差(Variance)之间的权衡是至关重要的。高偏差通常意味着模型太简单,不能捕捉到数据中的所有相关模式(欠拟合)。高方差则意味着模型太复杂,对训练数据过度敏感(过拟合)。识别模型是受偏差还是方差的限制有助于选择正确的策略进行优化。

4. 机器学习的迭代发展

机器学习项目通常是迭代性的过程,需要多轮的实验和调整来达到最佳性能。每一轮迭代可能包括调整模型参数、增加新特征、改变模型结构或尝试新的数据预处理技术等。这种迭代过程有助于逐步提升模型性能,直到满足项目目标。

5. 误差分析

误差分析是查看模型预测错误的实例,并尝试找出导致错误的根本原因的过程。这可能涉及到分析模型在特定类型的样本上表现不佳的原因,或是识别数据中的噪声和异常值。误差分析有助于发现模型和数据集中的潜在问题,指导后续的改进。

6. 添加数据

在许多情况下,增加训练数据的数量可以提高模型的性能和泛化能力。尤其是当模型表现出高方差(过拟合)时,添加更多的、多样化的训练样本可以帮助模型学习更广泛的数据分布,从而提升性能。

7. 迁移学习:使用其他任务中的数据

迁移学习是一种利用在一个任务上学到的知识来提升在另一个相关任务上的性能的方法。通过使用预训练的模型作为起点并在新的数据集上进行微调,可以在数据较少的情况下快速提升模型性能,尤其是在新任务与原始任务相似的情况下。

通过理解和应用这些模型优化和迭代改进的策略,可以系统地提升机器学习模型的表现,使其更加健壮和准确,满足实际应用中的需求。


机器学习的伦理与公平性:

在进行机器学习项目时需要考虑伦理和公平性问题,如何在模型评估和选择时考虑这些因素

1. 机器学习项目的完整周期

机器学习项目的完整周期包括问题定义、数据收集、数据预处理、模型选择和训练、模型评估、模型部署等多个阶段。在每个阶段,都需要考虑伦理和公平性问题,确保整个过程的透明性、公正性和责任性,避免造成潜在的负面社会影响。

2. 公平、偏见与伦理

在机器学习中,公平性指的是模型的决策对所有群体都公正无偏,偏见则是指模型决策中存在对某些群体的不公正倾向。伦理问题涉及到机器学习应用可能对个人和社会造成的影响。这要求开发者在设计和实施机器学习系统时,需识别和减轻潜在的偏见来源,确保算法的公平性和透明性。

3. 倾斜数据集的误差指标

倾斜数据集是指某些类别的样本远多于其他类别的情况,这在现实世界的数据中很常见。这种不平衡可能导致模型的评估指标不准确,因为模型可能倾向于预测占多数的类别。在这种情况下,需要采用更适合的误差指标,如加权精确率、加权召回率等,来更准确地评估模型性能。

4. 精确率与召回率的权衡

在分类任务中,精确率是指模型正确识别为正类的样本占所有识别为正类样本的比例,召回率是指模型正确识别为正类的样本占所有实际为正类的样本的比例。在很多情况下,提高精确率会降低召回率,反之亦然,这就形成了权衡。在考虑机器学习的伦理和公平性时,需要根据具体应用的社会影响和成本,恰当地平衡这两个指标。

通过在机器学习项目的各个阶段积极考虑和解决伦理和公平性问题,可以确保技术的发展不仅提高了效率和准确性,而且增进了社会的公正和福祉。这要求开发者、研究者和决策者具有高度的责任感和道德意识,以及对可能的偏见和不公正进行持续的警惕和校正。


决策树与集成学习

决策树模型及其扩展到集成学习方法的应用,尤其是随机森林和XGBoost等先进算法。

1. 决策树模型

决策树是一种基本的机器学习模型,通过一系列的问题(通常是关于特征的条件判断)来对数据进行分类或回归。决策树由节点(表示测试条件)和边(表示测试结果)组成,最终将数据分到不同的类别或预测值。

2. 学习过程

决策树的学习过程涉及选择最佳的特征和条件来分割数据,以便在每个子节点上尽可能增加数据的“纯净度”。这个过程从根节点开始,递归地在每个节点进行,直到满足停止条件,如节点下的数据量小于某个阈值或数据已足够“纯净”。

3. 测量纯度

节点的纯度是指节点中数据的一致性,通常使用基尼不纯度、熵或分类错误率等指标来测量。纯度的提高意味着在该节点的数据中,同一类别的数据所占比例更高。

4. 选择拆分信息增益

信息增益是基于熵的概念,用于衡量通过某次分割所带来的“信息量”增加。在构建决策树时,会选择使信息增益最大化的特征和条件作为分割节点的依据。

5. 整合

通过整合多个模型的预测,可以提高整体的预测性能。这是集成学习方法的基本思想,包括随机森林、梯度提升决策树(如XGBoost)等。

6. 使用分类特征的一种独热编码(One-Hot)

对于分类特征,一种常见的处理方式是使用独热编码,将类别特征转换为一系列的二元特征,每个特征代表一个类别,有助于提升模型的性能和解释性。

7. 连续的有价值特征

对于连续特征,决策树会在特征的所有可能值中选择一个最佳分割点,将数据分为两部分,以提高子节点的纯度。

8. 使用多个决策树

通过结合多个决策树的预测结果,可以减少模型的方差,提高预测的准确性和稳定性。这是随机森林和梯度提升决策树等集成方法的基本原理。

9. 放回抽样

放回抽样(Bootstrap sampling)是随机森林中使用的一种技术,它允许在构建每棵树时重复使用数据样本,增加模型的多样性。

10. 随机森林算法

随机森林是一种集成学习方法,它由多棵决策树组成,每棵树都在随机选取的数据和特征子集上训练。随机森林的最终预测是基于所有树的预测结果的平均或多数投票。

11. XGBoost

XGBoost(Extreme Gradient Boosting)是一种基于梯度提升的集成学习算法,它在速度和性能上都进行了优化,并广泛应用于各种机器学习竞赛和实际问题中。

12. 什么时候使用决策树

决策树适用于各种数据类型和复杂性的问题,特别是当数据关系可以通过一系列决策规则描述时。决策树和基于决策树的集成方法因其易于理解和解释、处理能力强大以及适应性广泛而受到青睐。

通过了解决策树及其扩展到集成学习的高级算法,可以有效解决多种机器学习问题,同时提高模型的准确性和鲁棒性。


好的,以上就是机器学习第二阶段:高级学习算法的全部梳理,欢迎大家点赞收藏多多支持,也欢迎大家在评论区踊跃讨论,下篇文章见!

  • 15
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值