Treasure Hunt
Treasure Hunt |
Archeologists from the Antiquities and Curios Museum (ACM) have flown to Egypt to examine the great pyramid of Key-Ops. Using state-of-the-art technology they are able to determine that the lower floor of the pyramid is constructed from a series of straightline walls, which intersect to form numerous enclosed chambers. Currently, no doors exist to allow access to any chamber. This state-of-the-art technology has also pinpointed the location of the treasure room. What these dedicated (and greedy) archeologists want to do is blast doors through the walls to get to the treasure room. However, to minimize the damage to the artwork in the intervening chambers (and stay under their government grant for dynamite) they want to blast through the minimum number of doors. For structural integrity purposes, doors should only be blasted at the midpoint of the wall of the room being entered. You are to write a program which determines this minimum number of doors.
An example is shown below:
Input
The input will consist of several cases.The first line of the input contains the number of cases, and it's followed bya blank line.The first line of each case will be an integer n ( ) specifying number of interior walls, followed by n lines containing integer endpoints of each wall x1 y1 x2 y2. The 4 enclosing walls of the pyramid have fixed endpoints at (0,0), (0,100), (100,100) and (100,0) and are not included in the list of walls. The interior walls always span from one exterior wall to another exterior wall and are arranged such that no more than two walls intersect at any point. You may assume that no two given walls coincide. After the listing of the interior walls there will be one final line containing the floating point coordinates of the treasure in the treasure room (guaranteed not to lie on a wall).
Different cases are separated by a blank line.
Output
For each case, print a single line listing the minimum number of doors which need to be created, in the format shown below. Print a blank line between cases.Sample Input
1 7 20 0 37 100 40 0 76 100 85 0 0 75 100 90 0 90 0 71 100 61 0 14 100 38 100 47 47 100 54.5 55.4
Sample Output
Number of doors = 2
Miguel A. Revilla
2000-02-09
题意:有一个长为100的正方形,里面有些直线把这个正方形划分成很多个房间,每个交点只会经过两条直线。里面的其中一个房间会有宝藏。你在正方形外面,你每次能够炸掉房间的一面墙的中间的地方。问最少要炸掉多少面墙才能拿到宝藏。
思路:我的想法实现起来比较麻烦。。。不知道有没有更好的办法。我的想法是用一次半平面交找出宝藏的房间。然后找到每个边的中点,然后往外偏移一点点,再算半平面就找到下一个房间。我们可以用bfs来搜索,知道半平面有外墙的边。判重的话,我是把这些偏移的点保存下来。没扩展一个点就求半平面,看以前的点是否在这个半平面内,如果在里面,说明这个房间已经搜过了,否则就距离+1.因为数据量不是很大,所以是可以过的。
代码:
#include<iostream>
#include<cstdio>
#include<string.h>
#include<math.h>
#include<string>
#include<set>
#include<cstring>
#include<map>
#include<algorithm>
#include<vector>
#include<queue>
using namespace std;
#define mp make_pair
#define eps 1e-10
const double inf = 1e16;
const double PI = acos(-1.0);
struct Point
{
Point(const Point&p) { x = p.x , y = p.y; }
Point (double xx=0,double yy=0) : x(xx) , y(yy) { }
double x;
double y;
};
typedef Point Vector;
Vector operator+(Vector v1,Vector v2) { return Vector(v1.x+v2.x,v1.y+v2.y); }
Vector operator-(Vector v1,Vector v2) { return Vector(v1.x-v2.x,v1.y-v2.y); }
Vector operator*(Vector v, double p) { return Vector(v.x*p,v.y*p); }
Vector operator/(Vector v,double p) { return Vector(v.x/p,v.y/p); }
int dcmp(double x)
{
if (fabs(x) < eps) return 0;
return x < 0 ? -1 : 1;
}
bool operator < (Point a,Point b) { return dcmp(a.x-b.x)<0 || dcmp(a.x-b.x)==0 && dcmp(a.y-b.y)<0; }
bool operator==(const Point & a,const Point & b)
{
return dcmp(a.x-b.x)==0 && dcmp(a.y-b.y)==0;
}
inline double toRad(double x) { return x * PI/180; }
inline double toDegreed(double rad) { return rad*180/PI; }
double Dot(Vector A,Vector B) { return A.x*B.x+A.y*B.y; }
double Length(Vector A) { return sqrt(Dot(A,A)); }
double Angle(Vector A,Vector B)
{
double cosine = Dot(A,B)/Length(A)/Length(B);
if (dcmp(cosine-1.0)==0) return 0;
return acos(cosine);
}
double Cross(Vector A,Vector B) { return A.x*B.y-A.y*B.x; }
double Area2(Point a,Point b,Point c) { return Cross(b-a,c-a); }
double PolyArea(Point *poly, int n)
{
double ret = 0;
for (int i = 1 ; i < n-1 ; ++i)
ret += Cross(poly[i]-poly[0],poly[i+1]-poly[0]);
return ret/2;
}
//旋转
Vector Rotate(Vector A,double rad)
{
return Vector(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad));
}
//单位法线
Vector Normal(Vector A) { double L = Length(A); return Vector(-A.y/L,A.x/L); }
//点和直线
Point GetLineIntersection(Point P,Vector v,Point Q,Vector w)
{
Vector u = P-Q;
double t = Cross(w,u) / Cross(v,w);
return P+v*t;
}
double DistanceToLine(Point P,Point A,Point B)
{
Vector v1 = B-A , v2 = P-A;
return fabs(Cross(v1,v2))/Length(v1);
}
double DistanceToSegment(Point P,Point A,Point B)
{
if (A==B) return Length(P-A);
Vector v1 = B-A , v2 = P-A , v3 = P-B;
if (dcmp(Dot(v1,v2)) < 0) return Length(v2);
else if (dcmp(Dot(v1,v3)) > 0) return Length(v3);
else return fabs(Cross(v1,v2))/Length(v1);
}
//点在直线上的投影
Point GetLineProjection(Point P,Point A,Point B)
{
Vector v = B-A;
return A+v*(Dot(v,P-A)/Dot(v,v));
}
//线段相交(不包括端点)
bool SegmentProperIntersection(Point a1,Point a2,Point b1,Point b2)
{
double c1 = Cross(a2-a1,b1-a1) , c2 = Cross(a2-a1,b2-a1) ,
c3 = Cross(b2-b1,a1-b1) , c4 = Cross(b2-b1,a2-b1);
return dcmp(c1)*dcmp(c2) < 0 && dcmp(c3)*dcmp(c4)<0;
}
//点在线段上(不包括端点)
bool OnSegment(Point p,Point a,Point b)
{
return dcmp(Cross(a-p,b-p))==0 && dcmp(Dot(a-p,b-p)) < 0;
}
//点在线上
bool OnLine(Point p,Point a,Point b)
{
if (p==a || p==b) return true;
return dcmp(Cross(a-p,b-p))==0;
}
//线段相交(包括端点)
bool SegmentIntersection(Point a1,Point a2,Point b1,Point b2)
{
if (SegmentProperIntersection(a1,a2,b1,b2)) return true;
if (OnSegment(a1,b1,b2) || OnSegment(a2,b1,b2)) return true;
if (OnSegment(b1,a1,a2) || OnSegment(b2,a1,a2)) return true;
if (a1==b1 || a1==b2 || a2==b1 || a2==b2) return true;
return false;
}
//点在多边形内:0:外部 1:内部 -1:线上 -2:在顶点
int isPointInPolygon(Point a,Point *p,int n)
{
int wn = 0;
for (int i = 0 ; i < n ; ++i) {
if (a==p[i]) return -2; //点重合
if (OnSegment(a,p[i],p[(i+1)%n])) return -1;
int k = dcmp(Cross(p[(i+1)%n]-p[i],a-p[i]));
int d1 = dcmp(p[i].y-a.y);
int d2 = dcmp(p[(i+1)%n].y-a.y);
if (k > 0 && d1<=0 && d2>0) ++wn;
if (k<0 && d2<=0 && d1>0) --wn;
}
if (wn!=0) return 1; //内部
return 0; //外部
}
//--------------------------------------------------------------------------------------------
//直线和直线
struct Line
{
Point P; //直线上任意一点
Vector v; // 方向向量。它的左边就是对应的半平面
double ang; //极角
Line() { }
Line(Point P,Vector v)
{
this->P = P ; this->v = v;
ang = atan2(v.y,v.x);
}
bool operator < (const Line& L) const { return ang < L.ang; } //排序用的比较运算符
Point point(double t) { return v*t+P; }
};
//点p在有向直线L的左边(线上不算)
bool OnLeft(Line L , Point p) { return Cross(L.v,p-L.P) > 0; }
//二直线交点。假定交点唯一存在
Point GetIntersection(Line a,Line b)
{
Vector u = a.P-b.P;
double t = Cross(b.v,u) / Cross(a.v,b.v);
return a.P+a.v*t;
}
//--------------------------------------------
//与圆相关
struct Circle
{
Circle() { }
Point c;
double r;
Circle(Point c, double r) : c(c) , r(r) { }
Point point (double a) { return Point(c.x+cos(a)*r,c.y+sin(a)*r); }
};
int getLineCircleIntersection(Line L,Circle C,double &t1,double &t2,vector<Point>& sol)
{
double a = L.v.x , b = L.P.x-C.c.x , c= L.v.y, d = L.P.y-C.c.y;
double e = a*a+c*c , f = 2*(a*b+c*d) , g = b*b+d*d-C.r*C.r;
double delta = f*f-4*e*g; //判别式
if (dcmp(delta) < 0) return 0; //相离
if (dcmp(delta)==0) { //相切
t1 = t2 = -f/(2*e);
sol.push_back(L.point(t1));
return 1;
}
//相交
t1 = (-f-sqrt(delta)) / (2*e); sol.push_back(L.point(t1));
t2 = (-f+sqrt(delta)) / (2*e); sol.push_back(L.point(t2));
return 2;
}
double angle(Vector v) { return atan2(v.y,v.x); }
int getCircleCircleIntersection(Circle C1,Circle C2,vector<Point>& sol)
{
double d = Length(C1.c-C2.c);
if (dcmp(d)==0) {
if (dcmp(C1.r-C2.r)==0) return -1; //两圆重合
return 0;
}
if (dcmp(C1.r+C2.r-d) < 0) return 0;
if (dcmp(fabs(C1.r-C2.r)-d) > 0) return 0;
double a = angle(C2.c-C1.c);
double da = acos((C1.r*C1.r+d*d-C2.r*C2.r)/(2*C1.r*d)); //向量C1C2的极角
//C1C2到C1P1的角
Point p1 = C1.point(a-da) , p2 = C1.point(a+da);
sol.push_back(p1);
if (p1==p2) return 1;
sol.push_back(p2);
return 2;
}
//国电p到圆C的切线。v[i]是第i条切线的向量。返回切线条数
int getTangents(Point p,Circle C,Vector* v)
{
Vector u= C.c-p;
double dist = Length(u);
if (dist < C.r) return 0;
else if (dcmp(dist-C.r)==0) {
v[0] = Rotate(u,PI/2);
return 1;
} else {
double ang = asin(C.r/dist);
v[0] = Rotate(u,-ang);
v[1] = Rotate(u,+ang);
return 2;
}
}
int getTangents(Circle A,Circle B,Point* a, Point* b)
{
int cnt = 0;
if (A.r < B.r) { swap(A,B); swap(a,b); }
double d2 = Dot(A.c-B.c,A.c-B.c);
double rdiff = A.r-B.r;
double rsum = A.r+B.r;
if (dcmp(d2-rdiff*rdiff) < 0) return 0; //内含
double base = atan2(B.c.y-A.c.y,B.c.x-A.c.x);
if (d2==0 && dcmp(A.r-B.r)==0) return -1; //无限多条切线
if (dcmp(d2-rdiff*rdiff)==0) { //内切,1条切线
a[cnt] = A.point(base);
b[cnt] = B.point(base);
++cnt;
return 1;
}
//有外切共线
double ang = acos((A.r-B.r)/sqrt(d2));
a[cnt] = A.point(base+ang); b[cnt] = B.point(base+ang); ++cnt;
a[cnt] = A.point(base-ang); b[cnt] = B.point(base-ang); ++cnt;
if (dcmp(d2-rsum*rsum)==0) { //一条内公切线
a[cnt] = A.point(base);
b[cnt] = B.point(PI+base);
++cnt;
} else if (dcmp(d2-rsum*rsum)>0) { //两条公切线
double ang = acos((A.r+B.r)/sqrt(d2));
a[cnt] = A.point(base+ang); b[cnt] = B.point(PI+base+ang); ++cnt;
a[cnt] = A.point(base-ang); b[cnt] = B.point(PI+base-ang); ++cnt;
}
return cnt;
}
//点p和圆的关系: 0:在圆上 1:在圆外 -1:在圆内
int PointCircleRelation(Point p,Circle c)
{
return dcmp(Dot(p-c.c,p-c.c)-c.r*c.r);
}
//A在B内
bool InCircle(Circle A,Circle B)
{
if (dcmp(A.r-B.r)>0) return false;
double d2 = Dot(A.c-B.c,A.c-B.c);
double rdiff = A.r-B.r;
double rsum = A.r+B.r;
if (dcmp(d2-rdiff*rdiff) <= 0) return true; //内含或内切或重合
return false;
}
//----------------------------------------------------------------------------
//与球相关的转化
//角度转换为弧度
double torad(double deg) { return deg/180*PI; }
//经纬度(角度)转化为空间坐标
void get_coord(double R,double lat,double lng,double& x,double& y,double& z)
{
lat = torad(lat);
lng = torad(lng);
x = R*cos(lat)*cos(lng);
y = R*cos(lat)*sin(lng);
z = R*sin(lat);
}
//-----------------------------------------------------------------------
//几何算法:
//凸包:O(nlogn) 得到的凸包逆时针
int ConvexHull(Point* p , int n, Point* ch)
{
sort(p,p+n);
int m = 0;
for (int i = 0 ; i < n ; ++i) {
while (m>1 && dcmp(Cross(ch[m-1]-ch[m-2],p[i]-ch[m-2]))<=0) --m;
ch[m++] = p[i];
}
int k = m;
for (int i = n-2 ; i >= 0 ; --i) {
while (m>k && dcmp(Cross(ch[m-1]-ch[m-2],p[i]-ch[m-2]))<=0) --m;
ch[m++] = p[i];
}
if (n > 1) --m;
return m;
}
//半平面交:(OnLeft>改成=变成最后的半平面可以是一条直线)
int HalfplaneIntersection(Line* L,int n,Point* poly)
{
sort(L,L+n); //按极角排序
int first , last; //双端队列的第一个元素和最后一个元素的下表
Point *p = new Point[n]; //p[i]为q[i]和q[i+1]的交点
Line *q = new Line[n]; //双端队列
q[first=last=0] = L[0]; //双端队列初始化为只有一个半平面L[0]
for (int i = 1 ; i < n ; ++i) {
while (first < last && !OnLeft(L[i],p[last-1])) --last;
while (first < last && !OnLeft(L[i],p[first])) ++first;
q[++last] = L[i];
if (dcmp(Cross(q[last].v,q[last-1].v))==0) {
//两向量平行且同向,取内侧的一个
--last;
if (OnLeft(q[last],L[i].P)) q[last] = L[i];
}
if (first < last) p[last-1] = GetIntersection(q[last-1],q[last]);
}
while (first < last && !OnLeft(q[first],p[last-1])) --last;
//删除无用平面(*)
if (last - first <=1 ) { delete [] p; delete [] q; return 0; } //空集(**)
p[last] = GetIntersection(q[last],q[first]); //计算首尾两个半平面的交点
//从deque复制到输出中
int m = 0;
for (int i = first ; i <= last ; ++i) poly[m++] = p[i];
delete [] p; delete[] q;
return m ;
}
bool OnLine(Point p,Line L)
{
Vector v = p-L.P;
return dcmp(Cross(v,L.v))==0;
}
//旋转卡壳:
pair<double,double> RotateCalipers(Point* hull,int n)
{
hull[n] = hull[0];
Line L1, L2, L3, L4;
int q=0, w=0, e=0, r=0;
for (int i = 0 ; i < n ; ++i) {
if (dcmp(hull[i].y-hull[q].y)<0) q = i;
if (dcmp(hull[i].x-hull[w].x)<0) w = i;
if (dcmp(hull[i].y-hull[e].y)>0) e = i;
if (dcmp(hull[i].x-hull[r].x)>0) r = i;
}
L1 = Line(hull[q],Vector(1,0));
L2 = Line(hull[w],Vector(0,-1));
L3 = Line(hull[e],Vector(-1,0));
L4 = Line(hull[r],Vector(0,1));
double sum = 0;
double ansA = inf , ansC = inf;
while (dcmp(sum-PI/2)<0) {
double ang = Angle(hull[q+1]-hull[q],L1.v);
ang = min(ang,Angle(hull[w+1]-hull[w],L2.v));
ang = min(ang,Angle(hull[e+1]-hull[e],L3.v));
ang = min(ang,Angle(hull[r+1]-hull[r],L4.v));
sum += ang;
L1.v = Rotate(L1.v,ang);
L2.v = Rotate(L2.v,ang);
L3.v = Rotate(L3.v,ang);
L4.v = Rotate(L4.v,ang);
if (dcmp(ang-Angle(hull[q+1]-hull[q],L1.v))==0) { L1.P = hull[q+1]; q = (q+1)%n; }
if (dcmp(ang-Angle(hull[w+1]-hull[w],L2.v))==0) { L2.P = hull[w+1]; w = (w+1)%n; }
if (dcmp(ang-Angle(hull[e+1]-hull[e],L3.v))==0) { L3.P = hull[e+1]; e = (e+1)%n; }
if (dcmp(ang-Angle(hull[r+1]-hull[r],L4.v))==0) { L4.P = hull[r+1]; r = (r+1)%n; }
double A = DistanceToLine(L1.P,L3.P,L3.P+L3.v*Length(L1.P-L3.P));
double B = DistanceToLine(L2.P,L4.P,L4.P+L4.v*Length(L2.P-L4.P));
ansA = min(ansA,A*B);
ansC = min(ansC,A+B);
}
ansC *= 2;
return mp(ansA,ansC);
}
//-----------------------------------------------------------------------
const int maxn = 3000+10;
int n , m;
Point p[maxn] , pp[maxn], st;
Line L[maxn];
Point vis[maxn]; int sz;
bool finish(int n)
{
for (int i = 0; i < n; ++i) {
if (dcmp(p[i].x)==0) return true;
if (dcmp(p[i].x-100)==0) return true;
if (dcmp(p[i].y)==0) return true;
if (dcmp(p[i].y-100)==0) return true;
}
return false;
}
void input()
{
scanf("%d",&n);
L[0] = Line(Point(0,0),Vector(100,0));
L[1] = Line(Point(100,0),Vector(0,100));
L[2] = Line(Point(100,100),Vector(-100,0));
L[3] = Line(Point(0,100),Vector(0,-100));
for (int i = 4; i < n+4; ++i) {
Point a , b;
scanf("%lf%lf%lf%lf",&a.x,&a.y,&b.x,&b.y);
L[i] = Line(a,b-a);
}
n += 4;
scanf("%lf%lf",&st.x,&st.y);
}
void ChangeLine(Point a)
{
for (int i = 0 ; i < n ; ++i) {
Line & L = ::L[i];
if (OnLeft(L,a)) continue;
L = Line(L.P+L.v,L.v*-1);
}
}
bool in_vis(Point a)
{
ChangeLine(a);
int m = HalfplaneIntersection(L,n,pp);
for (int i = 0; i < sz; ++i)
if (isPointInPolygon(vis[i],pp,m)!=0) return true;
return false;
}
bool inRange(Point a)
{
if (dcmp(a.x)<0) return false;
if (dcmp(a.y)<0) return false;
if (dcmp(a.x-100)>0) return false;
if (dcmp(a.y-100)>0) return false;
return true;
}
void solve()
{
queue<pair<Point,int> > q;
sz = 0;
q.push(mp(st,0)); vis[sz++] = st;
while (q.size()) {
pair<Point,int> state = q.front(); q.pop();
Point now = state.first;
int step = state.second;
ChangeLine(now);
int m = HalfplaneIntersection(L,n,p);
if (finish(m)) { printf("Number of doors = %d\n",step+1); return; }
p[m] = p[0];
for (int i = 0 ; i < m; ++i) {
Point a = (p[i]+p[i+1])/2;
Vector v = a-now;
a = now+v*(1+1e-4);
if (!inRange(a)) continue;
if (!in_vis(a)) {
vis[sz++] = a;
q.push(mp(a,step+1));
}
}
}
}
int main()
{
int T; cin>>T;
while (T--) {
input();
solve();
if (T) printf("\n");
}
}