Prometheus学习笔记

本文详细介绍了Prometheus,一个高大上的监控平台,强调了它在准确性和精确性方面的作用。文章涵盖Prometheus的基本概念,如time series数据模型、K/V数据模型,以及HTTP pull/push数据采集方式。此外,还探讨了Prometheus组件,如metrics、Gauges、Counters和Histograms。文章进一步讲解了PromQL中的关键函数,如rate、increase、sum和topk,并介绍了服务发现、企业级监控数据采集方法、Exporter、Pushgateway以及Grafana的安装和配置。最后,文章提到了Prometheus的告警配置和管理。
摘要由CSDN通过智能技术生成

Prometheus学习资料

是什么

高大上的监控平台

能给我带来什么

准确性和精确性的要求极大的贡献力量
在这里插入图片描述
在这里插入图片描述

特性

  • 基于time series时间序列模型

    时间序列模型,是一系列有序的数据,通常是等时间间隔的采样数据

  • 基于K/V的数据模型

  • 采用HTTP pull / push两种对应的数据采集传输方式

  • 本身自带图形调试

  • 最精细的数据采样理论上可以达到秒级采样
    在这里插入图片描述
    Prometheus组件
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

Prometheus metrics概念

Prometheus监控中,对于采集过来的数据统一称为metrics数据。其并不代表一种具体的数据格式,而是一种对于度量计算单位的抽象。

  • Gauges

    最简单的度量标准,只有一个返回值,或者叫瞬时状态。例如我们想衡量一个等待队列中任务的个数、CPU使用率、内存使用率

  • Counters

    Counter就是计数器,从数据量0开始累积计算,在理想状态下,只能永远增长或保持不变,不会下降(特殊情况另说)

    比如累积用户访问量

  • Histograms

    Histograms统计数据的分布状况,比如最小值,最大值,中位数,75百分位,90百分位,95百分位,99百分位
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
PromQL进阶
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
Promethus监控实例——CPU

node_cpu:监控cpu的key
node_cpu{
   mode="idle"} #cpu空闲使用时间
increase(node_cpu{
   mode="idle"}[1m]) #一分钟内CPU空闲使用时间
sum(increase(node_cpu{
   mode="idle"}[1m])) #聚合多核CPU一分钟内CPU空闲使用时间
by(instance):此函数可以把sum加合到一起的数值,按照指定的一个方式进行一层拆分,instance代表的是机器名
sum(increase(node_cpu{
   mode="idle"}[1m])) by(instance) #表示把sum函数中服务器加合再强行拆分出来
sum(increase(node_cpu[1m])) by(instance) #全部CPU时间一分钟增量
sum(increase(node_cpu{
   mode="idle"}[1m])) / sum
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值