2016百度之星资格赛 B题


Problem B

Accepts: 2288
Submissions: 8466
Time Limit: 2000/1000 MS (Java/Others)
Memory Limit: 65536/65536 K (Java/Others)
Problem Description

度熊面前有一个全是由1构成的字符串,被称为全1序列。你可以合并任意相邻的两个1,从而形成一个新的序列。对于给定的一个全1序列,请计算根据以上方法,可以构成多少种不同的序列。

Input

这里包括多组测试数据,每组测试数据包含一个正整数N,代表全1序列的长度。

1≤N≤200

Output

对于每组测试数据,输出一个整数,代表由题目中所给定的全1序列所能形成的新序列的数量。

Sample Input
1
3
5
Sample Output
1
3
8


 
 
Hint
如果序列是:(111)。可以构造出如下三个新序列:(111), (21), (12)。  高精度计算

#include <iostream>
using namespace std;

long long a[210][3];

int main()
{
    int T,n;
    a[1][2]=1;
    a[2][2]=2;
    a[3][2]=3;
    for(int i=4;i<=200;i++)
    {
        a[i][2] = a[i-1][2]+a[i-2][2];
        a[i][1] = a[i-1][1]+a[i-2][1];
        a[i][0] = a[i-1][0]+a[i-2][0];
        if(a[i][2]>1000000000000000000)
        {
            a[i][2]-=1000000000000000000;
            a[i][1]++;
        }
        if(a[i][1]>1000000000000000000)
        {
            a[i][1]-=1000000000000000000;
            a[i][2]++;
        }
        cout << "a[" << i << "] = " ;
        if(a[i][0]!=0) cout<< a[i][0];
        if(a[i][1]!=0) cout<< a[i][1];
        cout << a[i][2]<< endl;
    }
    cin >> T;
    while(T--)
    {
        cin >> n;
        cout << a[n] << endl;
    }
}

附上搜题目的时候,看到的别人的解法,,http://blog.csdn.net/wzngzaixiaomantou/article/details/51418869。。

引用上面的解法,考虑怎么自动化,不然每次都自己考虑位数问题,,好方。。

#include <iostream>
using namespace std;
#define maxn 210
int a[maxn][maxn];

int main()
{
    int T,n,j;
    a[1][maxn-1]=1;
    a[2][maxn-1]=2;
    a[3][maxn-1]=3;
    for(int i=4;i<=200;i++)
    {
        for(j=maxn-1 ; j>=0 ; j--)
        {
            a[i][j] += (a[i-1][j]+a[i-2][j]);
            if(a[i][j]>=10)
            {
                a[i][j]-=10;
                a[i][j-1]++;
            }
        }
        cout << "a[" << i << "] = " ;
        j=0;
        while(a[i][j]==0) j++;
        while(j<maxn) cout<< a[i][j++];
        cout << endl;
    }
    cin >> T;
    while(T--)
    {
        cin >> n;
        cout << a[n] << endl;
    }
}

改的过程中,,发现写的第一个程序是错的。。

a[i][j] += (a[i-1][j]+a[i-2][j]);   之前写的是 a[i][j] = (a[i-1][j]+a[i-2][j]);

哎。。。。简单的加法器都。。

改完后发现还有问题。。

问题的症结在于,我想用100.....进制的加法器

然后我尝试从简单的开始,100进制的,结果出现如下问题


a[20]  比前面的还小了,找原因,,发现 a[20][2]=1;a[20][1] = 9;a[20][0]=46  这样打印出来就成了 1946,,晕


来来来,我们来写一个任意进制的。

“任意n” 需要改

#define jinzhi n

#define jinzhi_wei "n-1的位数"

#include<iostream>
#include <iomanip>
using namespace std;
#define maxn 210

#define jinzhi 1000000000
#define jinzhi_wei 9

int a[maxn][maxn];

int main()
{
    int j;
    a[1][0]=1;
    a[2][0]=2;
    for(int i=3;i<=200;i++)
    {
        for(j=0;j<maxn;j++)
        {
            a[i][j] += a[i-1][j]+a[i-2][j];
            //cout << "a[" << i << "]["<<j<<"]="<< a[i][j] << endl;
            if(a[i][j]>=jinzhi)
            {
                a[i][j] -= jinzhi;
                a[i][j+1] ++;
            }
        }

        j--;
        while(a[i][j]==0)
            j--;
        cout << a[i][j];
        j--;
        for(;j>=0;j--)
        {
            cout.fill('0');
            cout<<setw(jinzhi_wei);
            cout << a[i][j];
        }
        cout << endl;
    }
}

来来来,我们再把第一个程序改的可以用

#include<iostream>
#include <iomanip>
using namespace std;
#define maxn 210

#define jinzhi 1000000000000000000
#define jinzhi_wei 18

long long a[maxn][3];

int main()
{
    int j;
    a[1][0]=1;
    a[2][0]=2;
    for(int i=3;i<=200;i++)
    {
        for(j=0;j<3;j++)
        {
            a[i][j] += a[i-1][j]+a[i-2][j];
            //cout << "a[" << i << "]["<<j<<"]="<< a[i][j] << endl;
            if(a[i][j]>=jinzhi)
            {
                a[i][j] -= jinzhi;
                a[i][j+1] ++;
            }
        }

        j--;
        while(a[i][j]==0)
            j--;
        cout << a[i][j];
        j--;
        for(;j>=0;j--)
        {
            cout.fill('0');
            cout<<setw(jinzhi_wei);
            cout << a[i][j];
        }
        cout << endl;
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值