软件工程=算法+数据。
所以算法是一个非常重要的地位。
一:Java基本算法
Java的基础算法有很多,比如冒泡排序,选择排序,插入排序等等。接下来我们就一个一个来说。
1:冒泡排序
算法步骤
-
比较相邻的元素。如果第一个比第二个大,就交换他们两个。
-
对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。
-
针对所有的元素重复以上的步骤,除了最后一个。
-
持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。
代码:
public static void bubbleSort(int array[]) {
int t = 0;
for (int i = 0; i < array.length - 1; i++)
for (int j = 0; j < array.length - 1 - i; j++)
if (array[j] > array[j + 1]) {
t = array[j];
array[j] = array[j + 1];
array[j + 1] = t;
}
}
2:选择排序
算法步骤
-
首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置
-
再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。
-
重复第二步,直到所有元素均排序完毕。
代码
public static void selectSort(int array[]) {
int t = 0;
for (int i = 0; i < array.length - 1; i++){
int index=i;
for (int j = i + 1; j < array.length; j++)
if (array[index] > array[j])
index=j;
if(index!=i){ //找到了比array[i]小的则与array[i]交换位置
t = array[i];
array[i] = array[index];
array[index] = t;
}
}
}
3:插入排序
算法步骤
-
将第一待排序序列第一个元素看做一个有序序列,把第二个元素到最后一个元素当成是未排序序列。
-
从头到尾依次扫描未排序序列,将扫描到的每个元素插入有序序列的适当位置。(如果待插入的元素与有序序列中的某个元素相等,则将待插入元素插入到相等元素的后面。
代码
public static void insertionSort(int array[]) {
int i, j, t = 0;
for (i = 1; i < array.length; i++) {
if(array[i]<array[i-1]){
t = array[i];
for (j = i - 1; j >= 0 && t < array[j]; j--)
array[j + 1] = array[j];
//插入array[i]
array[j + 1] = t;
}
}
}
4:快速排序
算法步骤
-
从数列中挑出一个元素,称为 “基准”(pivot);
-
重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;
-
递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序;
public static void quickSort(int array[], int low, int high) {// 传入low=0,high=array.length-1;
int pivot, p_pos, i, t;// pivot->位索引;p_pos->轴值。
if (low < high) {
p_pos = low;
pivot = array[p_pos];
for (i = low + 1; i <= high; i++)
if (array[i] < pivot) {
p_pos++;
t = array[p_pos];
array[p_pos] = array[i];
array[i] = t;
}
t = array[low];
array[low] = array[p_pos];
array[p_pos] = t;
// 分而治之
quickSort(array, low, p_pos - 1);// 排序左半部分
quickSort(array, p_pos + 1, high);// 排序右半部分
}
}
总结
名称 | 特点 | 思想 | 时间复杂度 | 空间复杂度 |
冒泡法排序 | 效率低,实现简单 | 每一趟将待排序序列中最大元素移到最后,剩下的为新的待排序序列,重复上述步骤直到排完所有元素。 这只是冒泡排序的一种,当然也可以从后往前排。 | O(n2) | O(1) |
选择排序 | 效率低,容易实现。 | 每一趟从待排序序列选择一个最小的元素放到已排好序序列的末尾,剩下的为待排序序列,重复上述步骤直到完成排序 | O(n2) | O(1) |
插入排序 | 效率低,容易实现。 | 将数组分为两部分,将后部分元素逐一与前部分元素比较,如果前部分元素比array[i]小,就将前部分元素往后移动。当没有比array[i]小的元素,即是合理位置,在此位置插入array[i] | O(n2) | O(1) |
快速排序 | 高效。 | 首先设置一个轴值pivot,然后以这个轴值为划分基准将待排序序列分成比pivot大和比pivot小的两部分, 接下来对划分完的子序列进行快排直到子序列为一个元素为止。 | O(nlog n) | O(log n) |
二:面试常用的题目。
1:双指针问题。
题目描述:在有序数组中找出两个数,使它们的和为 target。
使用双指针,一个指针指向值较小的元素,一个指针指向值较大的元素。指向较小元素的指针从头向尾遍历,指向较大元素的指针从尾向头遍历。
- 如果两个指针指向元素的和 sum == target,那么得到要求的结果;
- 如果 sum > target,移动较大的元素,使 sum 变小一些;
- 如果 sum < target,移动较小的元素,使 sum 变大一些。
数组中的元素最多遍历一次,时间复杂度为 O(N)。只使用了两个额外变量,空间复杂度为 O(1)。
2:贪心思想
保证每次操作都是局部最优的,并且最后得到的结果是全局最优的。