巨蟹座

巨蟹座的人性格很奇怪,有时候超爱说话,有时候可以一天不说话,高兴的时候,会拼命的说话,不高兴的时候,一句话也不说.
        巨蟹座的人不爱记仇,但谁对他好谁对他不好,他还是记得很清楚的
        巨蟹座把真实的自己藏于半夜的寂静和午夜明朗的笑声中.
        巨蟹座最注重的就是安全感.希望被保护,却常常是一个人.
        巨蟹座不容易爱上一个人,但一旦爱上便很难自拔。一旦受伤,总是被伤的很深。只有几个贴心朋友


        巨蟹是个很爱撒娇的孩子、总是很依赖别人
        巨蟹喜欢海,喜欢顾影自怜.喜欢自己舔伤口.
        巨蟹的性格很古怪而又孤僻,他们会突然在大笑中沉默,感觉悲伤.
        巨蟹心里想什么从来不说.别人也猜不到.
        巨蟹嘴上说不在乎、心里却早已悲凉、心里的那把火早已熄灭 .


        巨蟹选择了沉默、不在像以前那样挚热的去追求某样东西 .
        巨蟹总是很爱回忆、回忆以前的点点滴滴、以前的大小事只是默默的想着.
        巨蟹座的人天生敏锐,与生具备的第六感,对人的内心有超乎寻常的洞察力,但巨蟹座的人会把这些东西放在心里,巨蟹座的人可以把你的眼神、内心看得很清楚,但却不会告诉你,他用旁观的态度判定虚伪 .
        巨蟹座的人不懂甜言蜜语,不屑拍马屁 .
        巨蟹座的人本能的排斥虚伪和做作的人 .


        巨蟹座的人不会真的发火,就算生气,也很快忘记!
        巨蟹座的人只对真正懂他的人,展示他的创造性,他的情绪他变得冷淡就证明他开始对你重新审视, 当他越是沉默,就代表他越是生气 .
        巨蟹座的人可能看起来很凶,其实内心是最柔软的 .
        巨蟹座的人看起来很冷淡,但那只是保护自己的方法 .
        巨蟹座的人很重视友情,但被伤害后绝对不再友善 .


        巨蟹座的人很容易被感动,但感动中又保有理智 .
        巨蟹座的人可能看起来很坚强,其实是最脆弱的 .
        巨蟹座的人可能很爱哭,但他的哭并不代表认输 .
        巨蟹座的人可能看起来很笨,其实大智若愚 .

      巨蟹座的人可能做事很毛躁,但内心很细心 .
        巨蟹座的人天生敏感和细腻,却会用心鉴定 .

 

        巨蟹座的懦弱,受了伤之后,只知道躲在无人的地方独自哭泣 .

        巨蟹座的虚伪,明明已经心痛到无法呼吸,还要在最爱的他面前假装坚强;不轻易让任何人走进他自己独自的世界

        巨蟹座的笑容,无论开心或者悲伤,巨蟹都是一脸笑容,笑容,是他们伪装自己最好的武器,

        巨蟹的眼泪,从不轻易让人看见,他的泪,从来只有她知道,只是,谁又知道,在巨蟹的笑脸背后,埋藏的是深深的悲伤,笑的越开心,伤的越深 .

        巨蟹座的退缩,巨蟹座,永远不会轻易说爱或者喜欢,除非真的喜欢到了极点,否则,要巨蟹座表白几乎不可能,但是,一旦表白,巨蟹座就是不遗余力的付出,即使知道这样做换来的结果可能是深深的伤害…


        巨蟹座,永远只可能做同一件事两次,表白也一样,同一个人,只可能听到巨蟹向你最深的表白两次,两次之后,就是绝对的安静了…即使仍然深爱着,巨蟹也没有勇气再说第三遍我爱你…巨蟹的退缩,不能重复一件事第三次 .

        巨蟹座的愚蠢,不懂的怎么挽回深爱的人的心,只能自己心中默默的祝福和祈祷。

        受了伤的巨蟹,只会在角落独自忍受锥心的痛.

        巨蟹座:体贴第一名,爱吃第一名,爱家第一名,孝顺第一名,多愁善感第一名。

 

        如果你爱上巨蟹座…请你疼爱巨蟹座

在当今计算机视觉领域,深度学习模型在图像分割任务中发挥着关键作用,其中 UNet 是一种在医学影像分析、遥感图像处理等领域广泛应用的经典架构。然而,面对复杂结构和多尺度特征的图像,UNet 的性能存在局限性。因此,Nested UNet(也称 UNet++)应运而生,它通过改进 UNet 的结构,增强了特征融合能力,提升了复杂图像的分割效果。 UNet 是 Ronneberger 等人在 2015 年提出的一种卷积神经网络,主要用于生物医学图像分割。它采用对称的编码器 - 解码器结构,编码器负责提取图像特征,解码器则将特征映射回原始空间,生成像素级预测结果。其跳跃连接设计能够有效传递低层次的细节信息,从而提高分割精度。 尽管 UNet 在许多场景中表现出色,但在处理复杂结构和多尺度特征的图像时,性能会有所下降。Nested UNet 通过引入更深层次的特征融合来解决这一问题。它在不同尺度上建立了密集的连接路径,增强了特征的传递与融合。这种“嵌套”结构不仅保持了较高分辨率,还增加了特征学习的深度,使模型能够更好地捕获不同层次的特征,从而显著提升了复杂结构的分割效果。 模型结构:在 PyTorch 中,可以使用 nn.Module 构建 Nested UNet 的网络结构。编码器部分包含多个卷积层和池化层,并通过跳跃连接传递信息;解码器部分则包含上采样层和卷积层,并与编码器的跳跃连接融合。每个阶段的连接路径需要精心设计,以确保不同尺度信息的有效融合。 编码器 - 解码器连接:Nested UNet 的核心在于多层次的连接。通过在解码器中引入“skip connection blocks”,将编码器的输出与解码器的输入相结合,形成一个密集的连接网络,从而实现特征的深度融合。 训练与优化:训练 Nested UNet 时,需要选择合适的损失函数和优化器。对于图像分割任务,常用的损失
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值