
人工智能
文章平均质量分 94
王亭_666
这个作者很懒,什么都没留下…
展开
-
谷歌Firebase Studio在线AI编程使用介绍
官方网站:https://studio.firebase.google.com/云端在线AI编程,使用时,本地电脑无需安装任何应用程序,只需满足网络能访问页面与注册用户登录界面【注意】: 需要科学上网,使用google账号登录即可登录后,左下区域可以创建一个新工程项目(类比于idea、pycharm中的new project)根据自己的需求选择创建新项目根据代码仓库进行已有项目拉取(当前仅支持github、gitlab、bitbucket,试了一下gitee会有红色报错不支持)原创 2025-04-23 14:57:07 · 938 阅读 · 0 评论 -
大模型Prompt提示词越狱相关知识
Prompt是指你向AI输入的内容,它直接指示AI该做什么任务或生成什么样的输出,简而言之, Prompt就是你与AI之间的“对话内容”,可以是问题、指令、描述或者任务要求,目的是引导AI进行特定的推理,生成或操作,从而得到预期的结果。在人工智能领域,特别是大语言模型(如GPT-4、deepseek、Gemini等)快速发展的背景下,prompt越狱(Prompt Jailbreaking)成为了一个备受关注的安全议题。一般称为“提示词越狱”或“提示词劫持”。原创 2025-04-09 16:01:39 · 1157 阅读 · 0 评论 -
RAGFlow部署与使用介绍-深度文档理解和检索增强生成
RAGFlow作为新一代智能文档处理平台,深度融合检索增强生成(RAG)技术与自动化工作流引擎,为企业级知识管理提供全栈解决方案。通过结合多模态解析、语义理解与智能推理能力,重塑了非结构化数据处理范式。传统的生成模型在回答复杂问题时常常依赖于预训练数据的广度与深度,而检索增强生成(Retrieval-Augmented Generation,简称RAG)则有效结合了检索与生成的优势,为各类应用场景提供了更为灵活、高效的解决方案。能够针对性的进行解答。原创 2025-04-03 17:36:11 · 1283 阅读 · 0 评论 -
Ollama+open-webui搭建私有本地大模型详细教程
Ollama 是一个轻量级的 AI 模型运行时,专注于简化 AI 模型的部署和使用。它支持多种预训练模型(如 Llama、Vicuna、Dolly 等),并且可以在本地运行,无需复杂的基础设施。Ollama 的设计理念是让 AI 模型的使用变得像运行普通程序一样简单,同时确保数据和隐私的安全性。 Ollama 正在不断优化和扩展,未来会支持更多模型类型、更高效的性能优化,以及更友好的用户界面。Ollama的目标是成为 AI 模型部署领域的标准工具,让更多人能够轻松使用原创 2025-04-01 17:47:39 · 1051 阅读 · 0 评论 -
AI智能体OpenManus使用介绍
OpenManus是MetaGPT团队在3小时内复刻Manus核心功能的开源AI智能体项目。它采用模块化Agent系统,包含主代理、规划代理和工具调用代理等角色,可自由组合功能模块创建定制AI助手。OpenManus具有实时反馈机制,能可视化展示思考链、任务进度和文件生成过程。它配备强大的工具链,如浏览器自动化、Python代码执行器、网络搜索工具和文件处理系统,可处理复杂任务。OpenManus全免费且支持本地部署,无需邀请码,用户可外挂任意大模型API,灵活配置。原创 2025-03-13 15:27:24 · 2741 阅读 · 0 评论 -
Dify部署与使用介绍-生成式 AI 应用创新引擎
Dify融合了后端即服务(Backend as Service)和 LLMOps 的理念,使开发者可以快速搭建生产级的生成式 AI 应用。即使你是非技术人员,也能参与到 AI 应用的定义和数据运营过程中。由于 Dify 内置了构建 LLM 应用所需的关键技术栈,包括对数百个模型的支持、直观的 Prompt 编排界面、高质量的 RAG 引擎、稳健的 Agent 框架、灵活的流程编排,并同时提供了一套易用的界面和 API。这为开发者节省了许多重复造轮子的时间,使其可以专注在创新和业务需求上原创 2025-03-05 17:06:16 · 3755 阅读 · 0 评论 -
VSCode集成deepseek使用介绍(Visual Studio Code)
随着AI辅助编程工具的快速发展,VSCode作为一款轻量级、高度可扩展的代码编辑器,已成为开发者首选的工具之一。DeepSeek作为AI模型,结合Roo Code插件,能够为开发者提供智能代码生成、调试辅助、需求分析等功能,极大提升了开发效率。这种组合顺应了AI与开发工具深度融合的趋势,尤其适合快速原型开发和小型项目原创 2025-02-20 11:35:14 · 2014 阅读 · 0 评论 -
深度学习中损失函数(loss function)介绍
在深度学习的宏伟城堡中,损失函数扮演着国王的角色,它决定了模型训练的方向和目标。损失函数,也被称为代价函数,是衡量模型预测与实际结果之间差异的函数。在深度学习的训练过程中,我们的目标就是最小化这个损失函数,就像是在一场游戏中,我们的目标是获得尽可能低的失误和丢分。 损失函数的选择对于模型的训练至关重要。不同的问题可能需要不同的损失函数。比如在图像识别中,我们可能需要一个能够处理大量类别的损失函数,这时候交叉熵损失就是一个很好的选择。原创 2024-12-13 10:23:48 · 1410 阅读 · 0 评论 -
阿里开业项目chat2DB-人工智能SQL分析介绍
下载安装包Chat2DB Setup 2.0.1.exe后,直接安装即可,界面非常简洁清晰配置完毕后,使用方式将改变成只需要描写需求即可chat2DB除可以AI智能SQL分析,还可以协助自动生成报表例如,wow_info表中,字段:zhuangbei,代表装备类型,有布甲、皮甲、板甲等等现在想去分析一下每种类型的占比情况在Charts栏中可以选择不同的指标,实现不同维度的数据。原创 2023-07-05 15:57:25 · 4257 阅读 · 1 评论