- 博客(5)
- 收藏
- 关注
翻译 Occlusion-Aware Cost Constructor for Light Field Depth Estimation论文阅读
深度估计中,匹配代价体构建是非常重要的一步,但是很难学习到。本文提出一种简单快速的代价体构建的方法去构建深度估计匹配代价。本文代价体的构建是一系列卷积和特别的扩张率组成。并且构建的代价体可以感知遮挡部分并动态的处理遮挡。当前基于深度学习的深度估计总共分为四个部分特征提取,代价体构建,代价聚合和深度回归。在深度估计中,匹配代价体构建过程中,不同空间位置的像素是平等的处理。但是一些像素是被遮挡的,具有较少有用的信息甚至会对结果造成负面影响。本篇文章提出了一种噪声感知的代价体构建的光场深度估计方法。...
2022-07-18 11:25:10 553
翻译 Learning Multi-modal Information for Robust Light Field Depth Estimation论文阅读
在本文中,通过焦点栈和RGB图来预测光场图片深度。1、全面提取纹理信息来寻找内部空间联系。 2、有效的融合从焦点栈和RGB图像中,使用注意力引导交叉融合模型提取到的信息。全面的利用了网络中每个模块的每个部分的特性,并且取得了非常好的效果。...
2022-06-29 12:44:39 183
翻译 Attention-Based View Selection Networks for Light-Field Disparity Estimation论文阅读
提出了注意力机制的选择网络来进行视差估计,并且能够利用全部的视角进行视差估计。
2022-06-23 11:53:38 426
翻译 论文阅读:A Taxonomy and Evaluation of Dense Light Field Depth Estimation Algorithms
摘要这是一篇综述类文章,讲述了光场深度估计的挑战,以及一些提交的光场深度估计算法的优势和劣势。明确了光场算法所处的位置和确定了进一步改进的潜力。一、介绍光场分析与经典多视图场景的主要区别在于密集且规则的采样,这允许开发新颖且高度准确的深度重建方法,该方法可以正确考虑遮挡以恢复精细细节。 近年来,各种算法被发表,但对其优缺点的客观比较并不直截了当。展示了深度估计挑战的结果。 有 7 名挑战参与者、2 份额外的基准提交和 5 份基线提交,我们总共分析了 14 种算法。 这是对当前最先进技术...
2022-04-24 21:13:18 319
翻译 论文阅读:EPINET: A Fully-Convolutional Neural NetworkUsing Epipolar Geometry for Depth from Light Field
目录摘要一、相关工作二、模型1.Epipoloar Geometry of Light Field Images2. Network Design3.Data Augmentation4. Details of learning总结摘要光场相机捕捉空间光线的空间和角度特性。由于它的特性,人们可以在不受控制的照明环境中计算光场的深度,这比有源传感设备有很大的优势。从光场计算的深度可用于许多应用,包括 3D 建模和重新聚焦。然而,来自手持相机的光场图像具有非常窄的基..
2022-04-24 10:22:54 681
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人