阅读目录
出处:http://www.cnblogs.com/zingp/
1 算法复杂度
算法复杂度分为时间复杂度和空间复杂度。其中, 时间复杂度是指执行算法所需要的计算工作量;而空间复杂度是指执行这个算法所需要的内存空间。
算法的复杂性体现在运行该算法时的计算机所需资源的多少上,计算机资源最重要的是时间和空间资源,因此复杂度分为时间和空间复杂度。用大O表示。
常见的时间复杂度(按效率排序)
2 冒泡排序
冒泡法:第一趟:相邻的两数相比,大的往下沉。最后一个元素是最大的。
第二趟:相邻的两数相比,大的往下沉。最后一个元素不用比。
1 def bubble_sort(array): 2 for i in range(len(array)-1): 3 for j in range(len(array) - i -1): 4 if array[j] > array[j+1]: 5 array[j], array[j+1] = array[j+1], array[j]
时间复杂度:O(n^2)
稳定性:稳定
改进:如果一趟比较没有发生位置变换,则认为排序完成
1 def bubble_sort(array): 2 for i in range(len(array)-1): 3 current_status = False 4 for j in range(len(array) - i -1): 5 if array[j] > array[j+1]: 6 array[j], array[j+1] = array[j+1], array[j] 7 current_status = True 8 if not current_status: 9 break
3 直接选择排序
选择排序法:每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放到序列的起始位置,直到全部排完。
1 def select_sort(array): 2 for i in range(len(array)-1): 3 min = i 4 for j in range(i+1, len(array)): 5 if array[j] < array[min]: 6 min = j 7 array[i], array[min] = array[min], array[i]
时间复杂度:O(n^2)
稳定性:不稳定
4 直接插入排序
列表被分为有序区和无序区两个部分。最初有序区只有一个元素。 每次从无序区选择一个元素,插入到有序区的位置,直到无序区变空。 其实就相当于摸牌:
1 def insert_sort(array): 2 # 循环的是第二个到最后(待摸的牌) 3 for i in range(1, len(array)): 4 # 待插入的数(摸上来的牌) 5 min = array[i] 6 # 已排好序的最右边一个元素(手里的牌的最右边) 7 j = i - 1 8 # 一只和排好的牌比较,排好的牌的牌的索引必须大于等于0 9 # 比较过程中,如果手里的比摸上来的大, 10 while j >= 0 and array[j] > min: 11 # 那么手里的牌往右边移动一位,就是把j付给j+1 12 array[j+1] = array[j] 13 # 换完以后在和下一张比较 14 j -= 1 15 # 找到了手里的牌比摸上来的牌小或等于的时候,就把摸上来的放到它右边 16 array[j+1] = min
时间复杂度:O(n^2)
稳定性:稳定
5 快速排序
取一个元素p(通常是第一个元素,但是这是比较糟糕的选择),使元素p归位(把p右边比p小的元素都放在它左边,在把空缺位置的左边比p大的元素放在p右边); 列表被p分成两部分,左边都比p小,右边都比p大; 递归完成排序。
1 def quick_sort(array, left, right): 2 if left < right: 3 mid = partition(array, left, right) 4 quick_sort(array, left, mid-1) 5 quick_sort(array, mid+1, right) 6 7 def partition(array, left, right): 8 tmp = array[left] 9 while left < right: 10 while left < right and array[right] >= tmp: 11 right -= 1 12 array[left] = array[right] 13 while left < right and array[left] <= tmp: 14 left += 1 15 array[right] = array[left] 16 array[left] = tmp 17 return left
时间复杂度:O(nlogn),一般情况是O(nlogn),最坏情况(逆序):O(n^2)
稳定性:不稳定
特点:就是快
6 堆排序
步骤: 建立堆 得到堆顶元素,为最大元素 去掉堆顶,将堆最后一个元素放到堆顶,此时可通过一次调整重新使堆有序。 堆顶元素为第二大元素。 重复步骤3,直到堆变空。
1 def sift(array, left, right): 2 """调整""" 3 i = left # 当前调整的小堆的父节点 4 j = 2*i + 1 # i的左孩子 5 tmp = array[i] # 当前调整的堆的根节点 6 while j <= right: # 如果孩子还在堆的边界内 7 if j < right and array[j] < array[j+1]: # 如果i有右孩子,且右孩子比左孩子大 8 j = j + 1 # 大孩子就是右孩子 9 if tmp < array[j]: # 比较根节点和大孩子,如果根节点比大孩子小 10 array[i] = array[j] # 大孩子上位 11 i = j # 新调整的小堆的父节点 12 j = 2*i + 1 # 新调整的小堆中I的左孩子 13 else: # 否则就是父节点比大孩子大,则终止循环 14 break 15 array[i] = tmp # 最后i的位置由于是之前大孩子上位了,是空的,而这个位置是根节点的正确位置。 16 17 18 def heap(array): 19 n = len(array) 20 # 建堆,从最后一个有孩子的父亲开始,直到根节点 21 for i in range(n//2 - 1, -1, -1): 22 # 每次调整i到结尾 23 sift(array, i, n-1) 24 # 挨个出数 25 for i in range(n-1, -1, -1): 26 # 把根节点和调整的堆的最后一个元素交换 27 array[0], array[i] = array[i], array[0] 28 # 再调整,从0到i-1 29 sift(array, 0, i-1)
时间复杂度:O(nlogn),
稳定性:不稳定
特点:通常都比快排慢
7 为什么堆排比快排慢?
回顾一下堆排的过程: 1. 建立最大堆(堆顶的元素大于其两个儿子,两个儿子又分别大于它们各自下属的两个儿子... 以此类推) 2. 将堆顶的元素和最后一个元素对调(相当于将堆顶元素(最大值)拿走,然后将堆底的那个元素补上它的空缺),然后让那最后一个元素从顶上往下滑到恰当的位置(重新使堆最大化)。 3. 重复第2步。 这里的关键问题就在于第2步,堆底的元素肯定很小,将它拿到堆顶和原本属于最大元素的两个子节点比较,它比它们大的可能性是微乎其微的。实际上它肯定小于其中的一个儿子。而大于另一个儿子的可能性非常小。于是,这一次比较的结果就是概率不均等的,根据前面的分析,概率不均等的比较是不明智的,因为它并不能保证在糟糕情况下也能将问题的可能性削减到原本的1/2。可以想像一种极端情况,如果a肯定小于b,那么比较a和b就会什么信息也得不到——原本剩下多少可能性还是剩下多少可能性。 在堆排里面有大量这种近乎无效的比较,因为被拿到堆顶的那个元素几乎肯定是很小的,而靠近堆顶的元素又几乎肯定是很大的,将一个很小的数和一个很大的数比较,结果几乎肯定是“小于”的,这就意味着问题的可能性只被排除掉了很小一部分。 这就是为什么堆排比较慢(堆排虽然和快排一样复杂度都是O(NlogN)但堆排复杂度的常系数更大)。 MacKay也提供了一个修改版的堆排:每次不是将堆底的元素拿到上面去,而是直接比较堆顶(最大)元素的两个儿子,即选出次大的元素。由于这两个儿子之间的大小关系是很不确定的,两者都很大,说不好哪个更大哪个更小,所以这次比较的两个结果就是概率均等的了
8 归并排序
思路:
一次归并:将现有的列表分为左右两段,将两段里的元素逐一比较,小的就放入新的列表中。比较结束后,新的列表就是排好序的。
然后递归。
1 # 一次归并 2 def merge(array, low, mid, high): 3 """ 4 两段需要归并的序列从左往右遍历,逐一比较,小的就放到 5 tmp里去,再取,再比,再放。 6 """ 7 tmp = [] 8 i = low 9 j = mid +1 10 while i <= mid and j <= high: 11 if array[i] <= array[j]: 12 tmp.append(array[i]) 13 i += 1 14 else: 15 tmp.append(array[j]) 16 j += 1 17 while i <= mid: 18 tmp.append(array[i]) 19 i += 1 20 while j <= high: 21 tmp.append(array[j]) 22 j += 1 23 array[low:high+1] = tmp 24 25 def merge_sort(array, low, high): 26 if low < high: 27 mid = (low + high) // 2 28 merge_sort(array, low, mid) 29 merge_sort(array, mid+1, high) 30 merge(array, low, mid, high)
时间复杂度:O(nlogn)
稳定性:稳定
快排、堆排和归并的小结
三种排序算法的时间复杂度都是O(nlogn) 一般情况下,就运行时间而言: 快速排序 < 归并排序 < 堆排序 三种排序算法的缺点: 快速排序:极端情况下排序效率低 归并排序:需要额外的内存开销 堆排序:在快的排序算法中相对较慢
9 希尔排序
希尔排序是一种分组插入排序算法。 首先取一个整数d1=n/2,将元素分为d1个组,每组相邻量元素之间距离为d1,在各组内进行直接插入排序; 取第二个整数d2=d1/2,重复上述分组排序过程,直到di=1,即所有元素在同一组内进行直接插入排序。希尔排序每趟并不使某些元素有序,而是使整体数据越来越接近有序;最后一趟排序使得所有数据有序。
1 def shell_sort(li): 2 """希尔排序""" 3 gap = len(li) // 2 4 while gap > 0: 5 for i in range(gap, len(li)): 6 tmp = li[i] 7 j = i - gap 8 while j >= 0 and tmp < li[j]: 9 li[j + gap] = li[j] 10 j -= gap 11 li[j + gap] = tmp 12 gap //= 2
时间复杂度:O((1+τ)n)
不是很快,位置尴尬
10 排序小结