那些年在华电的光辉岁月

时光荏苒,岁月匆匆,在华北电力大学的学习生涯即将结束。回首过去的两年半。。。。

2018-03-21 16:24:26

阅读数:28

评论数:0

Python向excel中写入数据

最近做了一项工作需要把处理的数据写入到Excel表格中进行保存,所以在此就简单介绍使用Python如何把数据保存到excel表格中。 数据导入之前需要安装xlwt依赖包,安装的方法就很简单,直接pip install xlwt,如果电脑安装过就不需要重复安装。 接下来将做一个简单的demo。把三行...

2017-12-03 19:16:50

阅读数:2425

评论数:0

机器翻译基础

端到端的神经网络机器翻译(End-to-End Neural Machine Translation)是近几年兴起的一种全新的机器翻译方法。本文首先将简要介绍传统的统计机器翻译方法以及神经网络在机器翻译中的应用,然后介绍NMT中基本的“编码-解码”框架(Encoder-Decoder)。 本文...

2017-09-03 22:55:53

阅读数:167

评论数:0

Python 引包 argparse 程序执行解析命令行参数介绍

argparse是Python用于解析命令行参数和选项的标准模块,用于代替已经过时的optparse模块。argparse模块的作用是用于解析命令行参数。 具体代码栗子: #coding:utf-8 import argparse import numpy as np import nltk...

2017-06-24 12:39:03

阅读数:242

评论数:0

Python 中 os 模块使用方法

os 模块提供了一个统一的操作系统接口函数, 这些接口函数通常是平台指定的,os 模块能在不同操作系统平台如 nt 或 posix中的特定函数间自动切换,从而能实现跨平台操作。 下面将介绍 os 模块的命令用法: (1)os.name: 字符串指示你正在使用的平台。比如对于Windows,它是...

2017-06-22 10:30:06

阅读数:258

评论数:0

TensorFlow 读取CSV数据代码实现

TensorFlow 读取CSV数据原理在此就不做详细介绍,直接通过代码实现: 方法一: 详细读取tf_read.csv 代码 #coding:utf-8 import tensorflow as tf filename_queue = tf.train.string_input_p...

2017-06-19 23:10:56

阅读数:2014

评论数:0

TensorFlow 中三种启动图 用法

介绍 TensorFlow 中启动图:  tf.Session(),tf.InteractivesSession(),tf.train.Supervisor().managed_session()  用法的区别: (1)tf.Session()          构造阶段完成后, ...

2017-06-19 14:44:44

阅读数:4056

评论数:0

TensorFlow 中 dropout 的使用介绍

dropout 主要作用就是防止过拟合。 dropout 一般都是用在全连接中,在卷积部分不会用到 dropout ,输出层也不会用到,一般用在输入层与输出层之间。 在 tensorflow 中有两种形式: (1)tf.nn.dropout(x, keep_prob, noise_shape = ...

2017-06-19 11:24:48

阅读数:1171

评论数:0

TensorFlow 中 tf.app.flags.FLAGS 的用法介绍

下面介绍 tf.app.flags.FLAGS 的使用,主要是在用命令行执行程序时,需要传些参数,代码如下: 新建一个名为:app_flags.py 的文件。 #coding:utf-8 # 学习使用 tf.app.flags 使用,全局变量 # 可以再命令行中运行也是比较方便,如果只写 p...

2017-06-19 09:31:41

阅读数:7008

评论数:0

Python 中 sorted 的用法

sorted 排序方法主要是用在 list 和 dict 中。 sorted 介绍: 其中, iterable 是可迭代类型            cmp 是用于比较的函数,比较什么由key 决定            key 是列表元素的某个属性或函数进行作为关键字,有默认值,迭代集合中...

2017-06-18 14:09:37

阅读数:535

评论数:0

Python 实现各种排序算法

本文用Python实现了插入排序、希尔排序、冒泡排序、快速排序、直接选择排序、堆排序、归并排序。 1、插入排序 描述 插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据,算法适用于少量数据的排序,时间复杂度为O(n^2)。是稳定的排序方法。插入算法把...

2017-06-15 11:17:40

阅读数:215

评论数:0

Word2vec 使用总结

word2vec是google 推出的做词嵌入(word embedding)的开源工具。 简单的说,它在给定的语料库上训练一个模型,然后会输出所有出现在语料库上的单词的向量表示,这个向量称为"word embedding"。基于这个向量表示,可以计算词与词之间的关系,例如相似...

2017-06-15 10:32:20

阅读数:993

评论数:0

Word2vec 原理公式推到和代码实现

本文摘录整编了一些理论介绍,推导了word2vec中的数学原理;并考察了一些常见的word2vec实现,评测其准确率等性能,最后分析了word2vec原版C代码;针对没有好用的Java实现的现状,移植了原版C程序到Java。时间和水平有限,本文没有就其发展历史展开多谈,只记录了必要的知识点,并着重...

2017-06-15 10:17:22

阅读数:920

评论数:0

TensorFlow 笔记(五):模型保存和恢复

保存与读取模型 在使用tf来训练模型的时候,难免会出现中断的情况。这时候自然就希望能够将辛辛苦苦得到的中间参数保留下来,不然下次又要重新开始。好在tf官方提供了保存和读取模型的方法。 保存模型的方法: # 之前是各种构建模型graph的操作(矩阵相乘,sigmoid等等....) save...

2017-06-15 10:11:14

阅读数:273

评论数:0

TensorFlow 笔记(四):常用的函数和说明

1.矩阵操作 1.1矩阵生成 这部分主要将如何生成矩阵,包括全0矩阵,全1矩阵,随机数矩阵,常数矩阵等 tf.ones | tf.zeros tf.ones(shape,type=tf.float32,name=None) tf.zeros([2, 3], int32) 用法类...

2017-06-15 10:08:51

阅读数:206

评论数:0

TensorFlow 笔记(三):多层 LSTM代码详细介绍

之前讲过了tensorflow中CNN的示例代码,现在我们来看RNN的代码。不过好像官方只给了LSTM的代码。那么我们就来看LSTM吧。 坦白说,这份写LSTM的代码有点难,倒不是说LSTM的原理有多难,而是这份代码中使用了大量tf提供的现成的操作函数。在精简了代码的同时,也增加了初学者阅读的难...

2017-06-15 10:03:24

阅读数:1228

评论数:0

TensorFlow笔记(二):多层CNN代码详细介绍

在之前的TensorFlow笔记(一):流程,概念和简单代码注释 文章中,已经大概解释了tensorflow的大概运行流程,并且提供了一个mnist数据集分类器的简单实现。当然,因为结构简单,最后的准确率在91%左右。似乎已经不低了?其实这个成绩是非常不理想的。现在mnist的准确率天梯榜已经被刷...

2017-06-15 09:57:30

阅读数:272

评论数:0

TensorFlow 笔记(一):流程,概念和简单的代码注释

tensorflow是google在2015年开源的深度学习框架,可以很方便的检验算法效果。这两天看了看官方的tutorial,极客学院的文档,以及综合tensorflow的源码,把自己的心得整理了一下,作为自己的备忘录。 1.tensorflow的运行流程 tensorflow的运行流程...

2017-06-15 09:53:46

阅读数:310

评论数:0

Word2vec基础介绍(四):CBOW和skip-gram模型

CBOW和skip-gram应该可以说算是word2vec的核心概念之一了。这一节我们就来仔细的阐述这两个模型。其实这两个模型有很多的相通之处,所以这里就以阐述CBOW模型为主,然后再阐述skip-gram与CBOW的不同之处。 1.CBOW模型 之前已经解释过,无论是CBOW模型还是skip-g...

2017-06-15 09:42:59

阅读数:1889

评论数:0

Word2vec基础介绍(三):构建Huffman树

这一部分将解释Huffman树的构造方法,并说明了如何根据Huffman树来产生对应的二进制编码。 Huffman树的构造 Huffman树的构造方法与Huffman编码密切相关。 具体的做法可以用下列伪码来描述 while (单词列表长度>1) { 从单词列表中挑选出...

2017-06-15 09:38:39

阅读数:364

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭