机器学习
梧桐林木
个人简介:勤学如春起之苗,辍学如磨刀之石。
展开
-
参数估计--极大似然估计
参数估计原创 2017-01-15 22:01:28 · 652 阅读 · 0 评论 -
大道至简——浅谈机器学习分类模型选择
机器学习的基本分类模型: KNN,决策树,naive bayes,逻辑回归,SVM,adaboostKNN:一种直接的学习方法,通过相似的近邻投票分类。模型不确定性有三:距离度量(相似性度量),特征权重分配,投票权重。不确定性因素很多,非常依赖训练和经验,容易发生过拟合,因为参数太多。但简单直接的方法,有时候是有奇效。在某个维度下相似性是大部分事物分类的通用规则,所以KNN做的好,可以解决很多问题原创 2017-04-12 10:31:35 · 4533 阅读 · 0 评论 -
机器学习 之 逻辑回归算法
初步接触 LR算法,(Logistic Regression Classifier)。大致的算法过程: 在训练集中训练一组权值参数,在测试样本集中这组权值参数与测试数据特征线性加和的方式求出一个值Z。再按照sigmoid函数形式分类。 具体情况如下: 谓LR分类器(Logistic Regression Classifier),并没有什么神秘的。在分类的情形下,经过学习之后的LR分类器其实就原创 2017-04-12 19:28:58 · 354 阅读 · 0 评论 -
tf.contrib.learn.preprocessing.VocabularyProcessor 用法实例
该方法是建立中文词汇表和把文本转为词ID序列。tf.contrib.learn.preprocessing.VocabularyProcessor (max_document_length, min_frequency=0, vocabulary=None, tokenizer_fn=None)参数:max_document_length: 文档的最大长度。如果文本的长度大于最大长度,...原创 2018-04-09 00:36:04 · 1637 阅读 · 0 评论