更多资料获取
📚 个人网站:ipengtao.com
大家好,今天为大家分享一个强大的 Python 库 - neuralprophet。
Github地址:https://github.com/ourownstory/neural_prophet
时间序列数据在许多领域中都占据着重要地位,如金融、气象、销售等。对时间序列数据进行准确的预测可以帮助我们做出更明智的决策。而NeuralProphet库的出现为时间序列数据的预测带来了新的可能性。本文将深入探讨NeuralProphet库的使用方法、功能特性以及如何利用它进行时间序列数据的预测。
什么是NeuralProphet库?
NeuralProphet是由Facebook开发的一个基于神经网络的时间序列预测库。它是Prophet库的进化版,结合了神经网络的强大能力和Prophet库的简单易用性。NeuralProphet库具有自适应性、灵活性和高性能的特点,可以用于预测各种类型的时间序列数据。
安装NeuralProphet库
首先,需要安装NeuralProphet库。
可以通过pip安装NeuralProphet库:
pip install neuralprophet
使用NeuralProphet库
首先,需要加载时间序列数据。
import pandas as pd
# 加载时间序列数据
df = pd.read_csv('time_series_data.csv')
NeuralProphet库使用了与Prophet库相似的数据格式,具有日期和目标列。
接下来,将数据拆分为训练集和测试集。
from neuralprophet import NeuralProphet
# 拆分训练集和测试集
train_df = df.iloc[:-100]
test_df = df.iloc[