Description
Input
第一行包含两个整数 n, K(1 ≤ K ≤ 2)。接下来 n – 1行,每行两个整数 a, b, 表示村庄a与b之间有一条道路(1 ≤ a, b ≤ n)。
Output
输出一个整数,表示新建了K 条道路后能达到的最小巡逻距离。
Sample Input
8 1
1 2
3 1
3 4
5 3
7 5
8 5
5 6
Sample Output
11
HINT
10%的数据中,n ≤ 1000, K = 1;
30%的数据中,K = 1;
80%的数据中,每个村庄相邻的村庄数不超过 25;
90%的数据中,每个村庄相邻的村庄数不超过 150;
100%的数据中,3 ≤ n ≤ 100,000, 1 ≤ K ≤ 2。
分析:
先考虑K==1的情况
加了一条边之后,图就变成了一棵环套树
显然我们如果要让巡逻距离尽可能短,那么就要使环上的边尽量多,
(因为不在环上的边都要走两遍)
怎么让环大呢,
就是让添加边变成环之前的那条链尽可能长
这就是树上最长链
树的直径
求法:
两遍dfs,
第一遍dfs找到一个最远点,再从最远点dfs,最后得出的最长dis就是树的直径
那么K==1的时候就是求一个直径dis
ans=2*(n-1-dis)+dis+1
K==2时,就是在K==1求出解得基础上,求一个次长直径
注意
如果我们什么处理都没有,直接求一个次长链(次短路方法),
可能会和最长链重合,那么最长链上的一部分就会走两遍
所以我们在求出最长链之后,把最长链上的边权赋为-1,
这样再跑一个裸的直径就好了
(这样就可以保证可以在新求出的直径中尽量少重合原先的直径)
tip
代码中我用了两种求直径的方法
注意dp返回值是当前点的f值
然而答案要单独统计
这里写代码片
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
const int N=100010;
struct node{
int x,y,nxt,v;
};
node way[N<<1];
int st[N],tot=-1,n,K;
int len1,len2,pre[N],ansx,ans;
int f[N],g[N];
void add(int u,int w,int z)
{
tot++;
way[tot].x=u;way[tot].y=w;way[tot].v=z;way[tot].nxt=st[u];st[u]=tot;
tot++;
way[tot].x=w;way[tot].y=u;way[tot].v=z;way[tot].nxt=st[w];st[w]=tot;
}
void dfs(int now,int fa,int dis)
{
if (dis>ans)
{
ans=dis;
ansx=now;
}
for (int i=st[now];i!=-1;i=way[i].nxt)
if (way[i].y!=fa)
{
pre[way[i].y]=i;
dfs(way[i].y,now,dis+way[i].v);
}
}
void change(int s,int t)
{
for (int i=t;i!=s;i=way[pre[i]].x)
{
way[pre[i]].v=-1;
way[pre[i]^1].v=-1;
}
}
int dp(int now,int fa)
{
f[now]=0;g[now]=0;
for (int i=st[now];i!=-1;i=way[i].nxt)
if (way[i].y!=fa)
{
int len=dp(way[i].y,now)+way[i].v;
if (len>f[now])
{
g[now]=f[now];
f[now]=len;
}
else if (len>g[now]) g[now]=len;
}
len2=max(len2,f[now]+g[now]); //统计答案
return f[now]; //dp返回的是最长链
}
int main()
{
memset(st,-1,sizeof(st));
scanf("%d%d",&n,&K);
for (int i=1;i<n;i++)
{
int u,w;
scanf("%d%d",&u,&w);
add(u,w,1);
}
memset(pre,-1,sizeof(pre));
ans=ansx=0;
dfs(1,0,0);
int p=ansx;
ans=ansx=0;
memset(pre,-1,sizeof(pre));
dfs(p,0,0);
if (K==1)
{
printf("%d",2*(n-1-ans)+ans+1);
return 0;
}
len1=ans;
change(p,ansx);
dp(1,0);
printf("%d\n",2*(n-1-len1-len2)+len1+len2+2);
return 0;
}