UVa11361 - Investigating Div-Sum Property(数位dp)

112 篇文章 0 订阅

题目链接

简介:
a~b中能被n整除且数字根也能被n整除的数的个数

分析:
一眼数位dp
于是我就开始设计状态:f[i][j][p][q][0/1],表示第i位,填的数字是j,余数为p,数字根余数为q,卡不卡边界

这是我看到了k的范围
完了,开不下啊怎么办

然而,实际上

k最大值不超过90

因为2^31只有10位,即使都填9,得到的数字根也不超过90
(差点被歪国人骗了)

tip

认真分析数据的范围

题目给出的不一定准确
注意a==1的情况

//这里写代码片
#include<cstdio>
#include<cstring>
#include<iostream>
#define ll long long

using namespace std;

ll f[11][10][100][100][2];
ll n,m,k;
int a[11],b[11];

void cl(ll n,int *a)
{
    int tt=0;
    while (n)
    {
        a[++tt]=n%10;
        n/=10;
    }
    for (int i=1;i<=tt/2;i++) swap(a[i],a[tt-i+1]);
    a[0]=tt;
}

ll doit(int *a)
{
    memset(f,0,sizeof(f));
    int i,j,p,q,l,c;
    for (i=0;i<=a[1];i++) f[1][i][i%k][i%k][i==a[1]]=1;

    for (i=1;i<a[0];i++)
        for (j=0;j<=9;j++)
            for (p=0;p<k;p++)
                for (q=0;q<k;q++)
                    for (l=0;l<=1;l++)
                    if (f[i][j][p][q][l])
                    {
                        int tt=9;
                        if (l) tt=a[i+1];
                        for (c=0;c<=tt;c++)
                        {
                            int p1=(p*10+c)%k;                //number 
                            int q1=(q+c)%k;                   //root of number
                            f[i+1][c][p1][q1][c==a[i+1]&&l]+=f[i][j][p][q][l];
                        }
                    }

    ll ans=0;
    for (i=0;i<=9;i++)
        for (j=0;j<=1;j++)
            ans+=f[a[0]][i][0][0][j];
    return ans;
}

int main()
{
    int T;
    scanf("%d",&T);
    while (T--)
    {
        scanf("%lld%lld%lld",&n,&m,&k);

        if (k>90)
        {
            printf("0\n");
            continue;
        }

        n--;
        cl(n,a); cl(m,b);
        if (n==0) a[0]++;

        printf("%lld\n",doit(b)-doit(a));
    }   
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值