分析:
之前在网络流建图经典建模第3类中介绍过
方法一
按左端点排序所有区间,把每个区间拆分看做两个点 Ai,Bi A i , B i (左右端点),建立附加源 S S 汇,以及附加顶点 S′ S ′ 。
- 连接 S S 到一条容量为 K K ,费用为0的有向边
- 从到每个 Ai A i 连接一条容量为1,费用为0的有向边
- 从每个 Bi B i 到 T T 连接一条容量为1,费用为0的有向边
- 从每个点到 Bi B i 连接一条容量为1,费用为区间长度的有向边
- 对于每个区间 i i 的与ta右边的不相交的所有区间 j j 的各连一条容量为1,费用为0的有向边
求最大费用最大流,最大费用流值就是最长k可重区间集的长度
方法二
离散化所有区间的端点,把每个端点看做一个点,建立附加源 S S 汇
- 从 S S 到顶点1 (最左边顶点)连接一条容量为,费用为0的有向边
- 从顶点2N (最右边顶点)到 T T 连接一条容量为K,费用为0的有向边
- 从顶点到顶点 i+1(i+1<=2N) i + 1 ( i + 1 <= 2 N ) ,连接一条容量为无穷大,费用为0的有向边
- 对于每个区间 [a,b] [ a , b ] ,从 a a 对应的顶点到 b b 对应的顶点连接一条容量为1,费用为区间长度的有向边
求最大费用最大流,最大费用流值就是最长k可重区间集的长度
解释
这个问题可以看做是求
K
K
条权之和最大的不想交路径,每条路径为一些不相交的区间序列
由于是最大费用流,两条路径之间一定有一些区间相交,可以看做事相交部分重复了2次,而条路经就是最多重复了
K
K
次
最简单的想法就是把区间排序后,不相交的区间之间连接一条边,由于每个区间只能用一次,所以要拆点,点内限制流量
如果我们改变一下思路,把端点作为网络中的顶点,区间恰恰是特定一些端点之间的边,这样建模的复杂度更小
(可以说,对于数轴上的点,覆盖次数是不会超过区间端点的,所以就只维护端点即可)
方法1的边数是的,而方法2的边数是
O(N)
O
(
N
)
的,可以解决更大规模的问题
方法二code
#include<cstdio>
#include<cstring>
#include<iostream>
#include<queue>
#include<algorithm>
using namespace std;
const int INF=0x33333333;
const int N=1500;
int n,nn,m,s,t,st[N],tot=0,V[N];
int dis[N],pre[N];
bool in[N];
struct node{
int x,y,v,c,nxt;
};
node way[N<<1];
struct po{
int x,y;
};
po a[N];
void add(int u,int w,int z,int cc) {
tot++;way[tot].x=u;way[tot].y=w;way[tot].v=z;way[tot].c=cc;way[tot].nxt=st[u];st[u]=tot;
tot++;way[tot].x=w;way[tot].y=u;way[tot].v=0;way[tot].c=-cc;way[tot].nxt=st[w];st[w]=tot;
}
int spfa(int s,int t) {
queue<int> Q;
memset(dis,0x33,sizeof(dis));
memset(pre,0,sizeof(pre));
memset(in,0,sizeof(in));
Q.push(s); dis[s]=0; in[s]=1;
while (!Q.empty()) {
int now=Q.front(); Q.pop();
in[now]=0;
for (int i=st[now];i!=-1;i=way[i].nxt)
if (way[i].v&&dis[way[i].y]>dis[now]+way[i].c) {
dis[way[i].y]=dis[now]+way[i].c;
pre[way[i].y]=i;
if (!in[way[i].y]) {
in[way[i].y]=1;
Q.push(way[i].y);
}
}
}
return dis[t]!=INF;
}
void solve() {
int ans=0;
while (spfa(s,t)) {
int sum=INF;
for (int i=t;i!=s;i=way[pre[i]].x) sum=min(sum,way[pre[i]].v);
ans+=sum*dis[t];
for (int i=t;i!=s;i=way[pre[i]].x)
way[pre[i]].v-=sum,way[pre[i]^1].v+=sum;
}
printf("%d\n",-ans);
}
void build() {
memset(st,-1,sizeof(st)); tot=-1;
s=0,t=nn+1;
for (int i=1;i<=n;i++) {
int x=lower_bound(V+1,V+1+nn,a[i].x)-V;
int y=lower_bound(V+1,V+1+nn,a[i].y)-V;
add(x,y,1,-(a[i].y-a[i].x));
}
add(s,1,m,0); add(nn,t,m,0);
for (int i=1;i<nn;i++) add(i,i+1,INF,0);
}
int main()
{
scanf("%d%d",&n,&m);
for (int i=1;i<=n;i++) {
scanf("%d%d",&a[i].x,&a[i].y);
if (a[i].x>a[i].y) swap(a[i].x,a[i].y);
V[i]=a[i].x; V[i+n]=a[i].y;
}
sort(V+1,V+1+n+n);
nn=unique(V+1,V+1+n+n)-V-1;
build();
solve();
return 0;
}