2.合并果子
【问题描述】
在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆。
每一次合并,多多可以把其中任意不超过k堆果子合并到一起,消耗的体力等于合并在一起的这些堆果子的重量之和。最终合并成为一堆果子。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。
因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。
例如有5堆果子,数目依次为3,2,1,4,5,每次合并最多3堆。可以先将1、2、3堆合并,新堆数目为6,耗费体力为6。接着,将新堆与剩下的两堆合并,又得到新的堆,数目为15,耗费体力为15。所以多多总共耗费体力=6+15=21。可以证明21为最小的体力耗费值。
【文件输入】
输入包括两行,第一行是两个整数n和k(1<=n,k<=10000),表示果子的种类数和每次最多可以合并的堆数。第二行包含n个整数,用空格分隔,第i个整数ai(1<=ai<=20000)是第i种果子的数目。
【文件输出】
输出包括一行,这一行只包含一个整数,也就是最小的体力耗费值。输入数据保证这个值小于231。
【样例输入】
5 3
3 2 1 4 5
【样例输出】
21
【数据规模】
对于30%的数据,保证有n<=1000:
对于50%的数据,保证有n<=5000;
对于全部的数据,保证有n<=10000。
被欧教坑了,欧教说的是原题,结果写完了突然发现不对,少了一个变量没有用k。
原来是加强版。。。
我用的stl,multimap,用起来挺爽的,但是好像考试不能用。
悲剧WA10,发现很多同学和我错误完全相同。
最后明白了是贪心策略出错了。
当k=2时,这种情况永远不会出现,就是剩下的果子数量,不够k个了,因为倒数第二次为2,最后一次为1,此时完成合并。但是若k>2,就会出现这种情况。
考虑一般情况,仍然和K=2情况相同,贪心,从堆中取k个最小。但是当剩余的少于k个时,就有问题了。
我们想的方法都是此时将剩下的果子都合并了,其实并不是最优。
容易证明。一开始先按最后会剩下的果子数量,从堆中取出,再合并,然后按照一般情况处理,这样是最优的。
因为这样的话,用小数据多加代替了大数据多加。
————————————————————————————————————————————————
while (fruit.size()>1)这里,一开始我是自己计算要合并的次数,一直写不对,其实只要满足有剩余的合并就好了
while (nn>k)nn-=(k-1)有点类似于一个模拟过程,nn-=(k-1)就是每次合并操作。
————————————————————————————————————————————————
这道题在原题基础上改变很少,可是却WA10,貌似在考试的时候只是想着题目相似,不会有多少考点,
根本就没有思考过题目的解法。。这个。。
//AC
#include <cstdlib>
#include <cmath>
#include <map>
#include <algorithm>
long n;long k;
long ans = 0;
int main()
{
freopen("fruit.in","r",stdin);
freopen("fruit.out","w",stdout);
std::multimap<long,long> fruit;
scanf("%ld%ld",&n,&k);
for (long i=1;i<n+1;i++)
{
long v;
scanf("%ld",&v);
fruit.insert(std::make_pair(v,v));
}
long nn = n;
while (nn>k)nn-=(k-1);
long tmp = 0;
for (long i=1;i<nn+1;i++)
{
long a = fruit.begin()->first;
fruit.erase(fruit.begin());
tmp += a;
}
fruit.insert(std::make_pair(tmp,tmp));
ans += tmp;
while (fruit.size()>1)
{
tmp = 0;
for (long j=1;j<k+1;j++)
{
if (fruit.empty())break;
long a = fruit.begin()->first;
fruit.erase(fruit.begin());
tmp += a;
}
fruit.insert(std::make_pair(tmp,tmp));
ans += tmp;
}
printf("%ld",ans);
}