【最大子矩形】棋盘制作

棋盘制作

【问题描述】

       国际象棋是世界上最古老的博弈游戏之一,和中国的围棋、象棋以及日本的将棋同享盛名。据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴阳。

       而我们的主人公小Q,正是国际象棋的狂热爱好者。作为一个顶尖高手,他已不满足于普通的棋盘与规则,于是他跟他的好朋友小W决定将棋盘扩大以适应他们的新规则。

小Q找到了一张由N*M个正方形的格子组成的矩形纸片,每个格子被涂有黑白两种颜色之一。小Q想在这种纸中裁减一部分作为新棋盘,当然,他希望这个棋盘尽可能的大。

       不过小Q还没有决定是找一个正方形的棋盘还是一个矩形的棋盘(当然,不管哪种,棋盘必须都黑白相间,即相邻的格子不同色),所以他希望可以找到最大的正方形棋盘面积和最大的矩形棋盘面积,从而决定哪个更好一些。

于是小Q找到了即将参加全国信息学竞赛的你,你能帮助他么?

【输入文件】

       输入文件chess.in的第一行包含两个整数NM,分别表示矩形纸片的长和宽。接下来的N行包含一个N * M的01矩阵,表示这张矩形纸片的颜色(0表示白色,1表示黑色)。

【输出文件】

       输出文件chess.out应包含两行,每行包含一个整数。第一行为可以找到的最大正方形棋盘的面积,第二行为可以找到的最大矩形棋盘的面积(注意正方形和矩形是可以相交或者包含的)。

【样例输入】

       3 3

       1 0 1

       0 1 0

       1 0 0

【样例输出】

       4

       6

【数据规模】

       对于20%的数据,N, M ≤ 80

       对于40%的数据,N, M ≤ 400

       对于100%的数据,N, M ≤ 2000


用了LX的方法,比较牛逼:

既然要黑白相间,即对角线上相同,按对角线顺序周期变化。那么我们把相间的对角线全部异或1然后就可以求颜色相同的了。

最大子正方形很简单,在所有的极大子矩形中找就行了。


#include <string>
#include <cstdio>
#define MAX(a,b) ((a)>(b)?(a):(b))
#define MIN(a,b) ((a)<(b)?(a):(b))
long map[2010][2010];
long sum[2010][2010];
long maxl[2][2010];
long maxr[2][2010];
long l[2010];
long r[2010];
long height[2010];

inline int getint()
{
    int res = 0; char tmp; bool sgn = 1;
    do tmp = getchar();
    while (!isdigit(tmp) && tmp != '-');
    if (tmp == '-')
    {
        sgn = 0;
        tmp = getchar();
    }
    do res = (res << 1) + (res << 3) + tmp - '0';
    while (isdigit(tmp = getchar()));
    return sgn ? res : -res;
}

int main()
{
	freopen("chess.in","r",stdin);
	freopen("chess.out","w",stdout);
	
	long n = getint();long m = getint();
	for (long i=1;i<n+1;i++)
		for (long j=1;j<m+1;j++)
		{
			map[i][j] = getint();
		}
	for (long k=1;k<n+m+1;k+=2)
		for (long i=1;i<k+1&&i<n+1;i++)
		{
 			long j = k-i+1;
 			if (j < m+1)
				map[i][j] ^= 1;
		}
	for (long i=1;i<n+1;i++)
		for (long j=1;j<m+1;j++)
			sum[i][j] = sum[i][j-1] + map[i][j];
	for (long i=1;i<n+1;i++)
		for (long j=1;j<m+1;j++)
			sum[i][j] += sum[i-1][j];
	
	for (long j=1;j<m+1;j++)
	{
		maxl[0][j] = 0;
		maxr[0][j] = m+1;
	}
	l[0] = 0;
	r[m+1] = m;
	long ans = 0;
	long ans2 = 0;
	for (long i=1;i<n+1;i++)
	{
		for (long j=1;j<m+1;j++)
		{
			if (map[i][j])
			{
				l[j] = l[j-1];
				maxl[i&1][j] = MAX(maxl[(i&1)^1][j],l[j]);
			}
			else
			{
				height[j] = i;
				
				l[j] = j;
				maxl[i&1][j] = 0;
			}
		}
		for (long j=m;j>0;j--)
		{
			if (map[i][j])
			{
				r[j] = r[j+1];
				maxr[i&1][j] = MIN(maxr[(i&1)^1][j],r[j]);
			}
			else
			{
				r[j] = j-1;
				maxr[i&1][j] = m+1;
			}			
		}
		for (long j=1;j<m+1;j++)
		{
			long ml = maxl[i&1][j];
			long mr = maxr[i&1][j];
			long he = height[j];
			ans = MAX(ans,sum[i][mr]+sum[he][ml]-sum[i][ml]-sum[he][mr]);
			
			long minlen = MIN(mr-ml,i-he);
			ans2 = MAX(ans2,minlen*minlen);
		}
	}
	
	for (long i=1;i<n+1;i++)
	{
		sum[i][0] = 0;
		for (long j=1;j<m+1;j++)
			map[i][j] ^= 1;
	}
	
	for (long i=1;i<n+1;i++)
		for (long j=1;j<m+1;j++)
			sum[i][j] = sum[i][j-1] + map[i][j];
	for (long i=1;i<n+1;i++)
		for (long j=1;j<m+1;j++)
			sum[i][j] += sum[i-1][j];
	
	for (long j=1;j<m+1;j++)
	{
		maxl[0][j] = 0;
		maxr[0][j] = m+1;
		height[j] = 0;
	}
	l[0] = 0;
	r[m+1] = m;
	for (long i=1;i<n+1;i++)
	{
		for (long j=1;j<m+1;j++)
		{
			if (map[i][j])
			{
				l[j] = l[j-1];
				maxl[i&1][j] = MAX(maxl[(i&1)^1][j],l[j]);
			}
			else
			{
				height[j] = i;
				
				l[j] = j;
				maxl[i&1][j] = 0;
			}
		}
		for (long j=m;j>0;j--)
		{
			if (map[i][j])
			{
				r[j] = r[j+1];
				maxr[i&1][j] = MIN(maxr[(i&1)^1][j],r[j]);
			}
			else
			{
				r[j] = j-1;
				maxr[i&1][j] = m+1;
			}			
		}
		for (long j=1;j<m+1;j++)
		{
			long ml = maxl[i&1][j];
			long mr = maxr[i&1][j];
			long he = height[j];
			ans = MAX(ans,sum[i][mr]+sum[he][ml]-sum[i][ml]-sum[he][mr]);
			
			long minlen = MIN(mr-ml,i-he);
			ans2 = MAX(ans2,minlen*minlen);
		}
	}
	
	printf("%ld\n%ld",ans2,ans);
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值