棋盘制作
【问题描述】
国际象棋是世界上最古老的博弈游戏之一,和中国的围棋、象棋以及日本的将棋同享盛名。据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴阳。
而我们的主人公小Q,正是国际象棋的狂热爱好者。作为一个顶尖高手,他已不满足于普通的棋盘与规则,于是他跟他的好朋友小W决定将棋盘扩大以适应他们的新规则。
小Q找到了一张由N*M个正方形的格子组成的矩形纸片,每个格子被涂有黑白两种颜色之一。小Q想在这种纸中裁减一部分作为新棋盘,当然,他希望这个棋盘尽可能的大。
不过小Q还没有决定是找一个正方形的棋盘还是一个矩形的棋盘(当然,不管哪种,棋盘必须都黑白相间,即相邻的格子不同色),所以他希望可以找到最大的正方形棋盘面积和最大的矩形棋盘面积,从而决定哪个更好一些。
于是小Q找到了即将参加全国信息学竞赛的你,你能帮助他么?
【输入文件】
输入文件chess.in的第一行包含两个整数N和M,分别表示矩形纸片的长和宽。接下来的N行包含一个N * M的01矩阵,表示这张矩形纸片的颜色(0表示白色,1表示黑色)。
【输出文件】
输出文件chess.out应包含两行,每行包含一个整数。第一行为可以找到的最大正方形棋盘的面积,第二行为可以找到的最大矩形棋盘的面积(注意正方形和矩形是可以相交或者包含的)。
【样例输入】
3 3
1 0 1
0 1 0
1 0 0
【样例输出】
4
6
【数据规模】
对于20%的数据,N, M ≤ 80
对于40%的数据,N, M ≤ 400
对于100%的数据,N, M ≤ 2000
用了LX的方法,比较牛逼:
既然要黑白相间,即对角线上相同,按对角线顺序周期变化。那么我们把相间的对角线全部异或1然后就可以求颜色相同的了。
最大子正方形很简单,在所有的极大子矩形中找就行了。
#include <string>
#include <cstdio>
#define MAX(a,b) ((a)>(b)?(a):(b))
#define MIN(a,b) ((a)<(b)?(a):(b))
long map[2010][2010];
long sum[2010][2010];
long maxl[2][2010];
long maxr[2][2010];
long l[2010];
long r[2010];
long height[2010];
inline int getint()
{
int res = 0; char tmp; bool sgn = 1;
do tmp = getchar();
while (!isdigit(tmp) && tmp != '-');
if (tmp == '-')
{
sgn = 0;
tmp = getchar();
}
do res = (res << 1) + (res << 3) + tmp - '0';
while (isdigit(tmp = getchar()));
return sgn ? res : -res;
}
int main()
{
freopen("chess.in","r",stdin);
freopen("chess.out","w",stdout);
long n = getint();long m = getint();
for (long i=1;i<n+1;i++)
for (long j=1;j<m+1;j++)
{
map[i][j] = getint();
}
for (long k=1;k<n+m+1;k+=2)
for (long i=1;i<k+1&&i<n+1;i++)
{
long j = k-i+1;
if (j < m+1)
map[i][j] ^= 1;
}
for (long i=1;i<n+1;i++)
for (long j=1;j<m+1;j++)
sum[i][j] = sum[i][j-1] + map[i][j];
for (long i=1;i<n+1;i++)
for (long j=1;j<m+1;j++)
sum[i][j] += sum[i-1][j];
for (long j=1;j<m+1;j++)
{
maxl[0][j] = 0;
maxr[0][j] = m+1;
}
l[0] = 0;
r[m+1] = m;
long ans = 0;
long ans2 = 0;
for (long i=1;i<n+1;i++)
{
for (long j=1;j<m+1;j++)
{
if (map[i][j])
{
l[j] = l[j-1];
maxl[i&1][j] = MAX(maxl[(i&1)^1][j],l[j]);
}
else
{
height[j] = i;
l[j] = j;
maxl[i&1][j] = 0;
}
}
for (long j=m;j>0;j--)
{
if (map[i][j])
{
r[j] = r[j+1];
maxr[i&1][j] = MIN(maxr[(i&1)^1][j],r[j]);
}
else
{
r[j] = j-1;
maxr[i&1][j] = m+1;
}
}
for (long j=1;j<m+1;j++)
{
long ml = maxl[i&1][j];
long mr = maxr[i&1][j];
long he = height[j];
ans = MAX(ans,sum[i][mr]+sum[he][ml]-sum[i][ml]-sum[he][mr]);
long minlen = MIN(mr-ml,i-he);
ans2 = MAX(ans2,minlen*minlen);
}
}
for (long i=1;i<n+1;i++)
{
sum[i][0] = 0;
for (long j=1;j<m+1;j++)
map[i][j] ^= 1;
}
for (long i=1;i<n+1;i++)
for (long j=1;j<m+1;j++)
sum[i][j] = sum[i][j-1] + map[i][j];
for (long i=1;i<n+1;i++)
for (long j=1;j<m+1;j++)
sum[i][j] += sum[i-1][j];
for (long j=1;j<m+1;j++)
{
maxl[0][j] = 0;
maxr[0][j] = m+1;
height[j] = 0;
}
l[0] = 0;
r[m+1] = m;
for (long i=1;i<n+1;i++)
{
for (long j=1;j<m+1;j++)
{
if (map[i][j])
{
l[j] = l[j-1];
maxl[i&1][j] = MAX(maxl[(i&1)^1][j],l[j]);
}
else
{
height[j] = i;
l[j] = j;
maxl[i&1][j] = 0;
}
}
for (long j=m;j>0;j--)
{
if (map[i][j])
{
r[j] = r[j+1];
maxr[i&1][j] = MIN(maxr[(i&1)^1][j],r[j]);
}
else
{
r[j] = j-1;
maxr[i&1][j] = m+1;
}
}
for (long j=1;j<m+1;j++)
{
long ml = maxl[i&1][j];
long mr = maxr[i&1][j];
long he = height[j];
ans = MAX(ans,sum[i][mr]+sum[he][ml]-sum[i][ml]-sum[he][mr]);
long minlen = MIN(mr-ml,i-he);
ans2 = MAX(ans2,minlen*minlen);
}
}
printf("%ld\n%ld",ans2,ans);
return 0;
}