【倍增/强连通分量】暴走的猴子

暴走的猴子(walk.pas/c/cpp)

【题目描述】

从前有一个森林,森林里生活着一群猴子,这里猴子有个恶趣味——暴走。现在给你这个森林里的树木描述,你能计算出这只猴子在暴走k步后会蹦达到哪里吗(友情提示:由于你上周帮助猎人写程序打死了猴子父亲,所以今天猴子特别不爽,故意暴走了很多很多步来为难你,从而导致了k非常的大,做好心里准备噢~)

【输入数据】

第一行两个数n,m表示树木数和询问次数

接下来n行,第i行一个数ai表示这只猴子当前在第i棵树的话,下一步会走到第ai棵树

接下来m行,每行两个数t,k,询问如果当前猴子在第t棵树,k步之后它会到第几棵树

【输出数据】

m行为每次询问的结果

【样例输入】

3 2                                                   

2

3

2

1 2

2 4

【样例输出】

3

2

【数据范围】

共十个测试点,每个测试点数据规模如下所示

1.n=10^2,m=n,k<=10^2

2.n=10^3,m=n,k<=10^3

3.n=10^4,m=1,k<=10^9

4.n=10^5,m=1,k<=10^9

5.n=10^5,m=1,k<=10^12

6.n=10^5,m=1,k<=10^15

7.n=10^5,m=1,k<=10^18

8.n=10^5,m=n,k<=10^12

9.n=10^5,m=n,k<=10^15

10.n=10^5,m=n,k<=10^18

【时限】

1s

 

这套题很好,每到题都有多种解法。

 

此题解法有三:

方法一:TLE70

我最先采用的方法,朴素模拟,当遇到环的时候就将剩余步数对环的大小取模。然后再进行一次模拟。此方法很简单。

#include <cstdio>
#include <cstring>
#include <string>

long nxt[100010];
typedef unsigned long long ull;
ull used[100010];

long getint()
{
	long rs=0;bool sgn=1;char tmp;
	do tmp=getchar();
	while (!isdigit(tmp)&&tmp-'-');
	if (tmp=='-'){tmp=getchar();sgn=1;}
	do rs=(rs<<3)+(rs<<1)+tmp-'0';
	while (isdigit(tmp=getchar()));
	return sgn?rs:-rs;
}

ull getll()
{
	ull rs=0;bool sgn=1;char tmp;
	do tmp=getchar();
	while (!isdigit(tmp)&&tmp-'-');
	if (tmp=='-'){tmp=getchar();sgn=1;}
	do rs=(rs<<3)+(rs<<1)+tmp-'0';
	while (isdigit(tmp=getchar()));
	return sgn?rs:-rs;
}

int main()
{
	freopen("walk.in","r",stdin);
	freopen("walk.out","w",stdout);
	long n = getint();
	long m = getint();
	for (long a=1;a<n+1;a++)
	{
		long b = getint();
		nxt[a] = b;
	}
	for (long i=1;i<m+1;i++)
	{
		if (m > 1)
		{
			memset(used,0,sizeof used);
		}
		long u = getint();
		used[u] = 1;
		ull s = getll();
		for (ull j=1;j<s+1;j++)
		{
			u = nxt[u];
			if (!used[u])
				used[u] = j+1;
			else
			{
				long ss = (s-j)%(j+1-used[u]);
				for (long k=1;k<ss+1;k++)
					u = nxt[u];
				break;
			}
		}
		printf("%ld\n",u);
	}
	return 0;
}

解法二:TLE90

强连通分量,实质与上面相同,不同之处在于,此解法类似于O(n)的预处理优化,预处理出所有的环来。所以较快。

遇到两个问题:

1、因为用了stl的min所以tarjan爆栈,不知道是为何。

2、每次移动后,没有更新所属的强连通分量。所以到了环却不知道。超时8组。

#include <cstdio>
#include <string>
#include <algorithm>
using std::min;

typedef unsigned long long ull;

long getint()
{
	long rs=0;char tmp;bool sgn=1;
	do tmp=getchar();
	while (!isdigit(tmp)&&tmp-'-');
	if (tmp=='-'){tmp=getchar();sgn=0;}
	do rs=(rs<<3)+(rs<<1)+tmp-'0';
	while (isdigit(tmp=getchar()));
	return sgn?rs:-rs;
}
ull getll()
{
	ull rs=0;char tmp;bool sgn=1;
	do tmp=getchar();
	while (!isdigit(tmp)&&tmp-'-');
	if (tmp=='-'){tmp=getchar();sgn=0;}
	do rs=(rs<<3)+(rs<<1)+tmp-'0';
	while (isdigit(tmp=getchar()));
	return sgn?rs:-rs;
}

long DFN[100010];
long LOW[100010];
long Stack[100010];
bool InStack[100010];
long cnt[100010];
long Belong[100010];
long nxt[100010];
long Bcnt = 0;
long top = 0;
long Time = 0;

void Tarjan(long u)
{
	DFN[u] = LOW[u] = ++Time;
	InStack[u] = true;
	Stack[++top] = u;

	long v = nxt[u];
	if (!DFN[v])
	{
		Tarjan(v);
		if (LOW[v] < LOW[u])
			LOW[u] = LOW[v];
	}
	else if (InStack[v] && DFN[v]<LOW[u])
	{
		LOW[u] = DFN[v];
	}

	if (DFN[u] == LOW[u])
	{
		Bcnt ++;
		long v;
		do
		{
			v = Stack[top--];
			InStack[v] = false;
			Belong[v] = Bcnt;
			cnt[Bcnt] ++;
		}while (u != v);
	}
}

int main()
{
	freopen("walk.in","r",stdin);
	freopen("walk.out","w",stdout);

	long n = getint();
	long m = getint();
	for (long i=1;i<n+1;i++)
		nxt[i] = getint();
	for (long i=1;i<n+1;i++)
		if (!DFN[i])
			Tarjan(i);
	for (long i=1;i<m+1;i++)
	{
		long u = getint();
		ull s = getll();
		long belongu = Belong[u];

		for (ull i=1;i<s+1;i++)
		{
			if (cnt[belongu]>1)
			{
				for(ull j=0;j<(s-i+1)%cnt[belongu];j++)
					u = nxt[u];
				break;
			}
			u = nxt[u];
			belongu = Belong[u];
		}

		printf("%ld\n",u);
	}
	return 0;
}

 

解法三:AC

这是标准解法,倍增思想。

非常巧妙。f[i][j] 表示 从j开始走2^i步可以到哪里。(利用二分降低时间复杂度到O(lgn))

然后用类似于快速幂的方法来移动,思路很简单,但是不容易想到,而且优化很大!

 

#include <cstdio>
#include <string>

typedef unsigned long long ull;

long f[65][100010];

long getint()
{
	long rs=0;bool sgn=1;char tmp;
	do tmp=getchar();
	while (!isdigit(tmp)&&tmp-'-');
	if (tmp=='-'){tmp=getchar();sgn=1;}
	do rs=(rs<<3)+(rs<<1)+tmp-'0';
	while (isdigit(tmp=getchar()));
	return sgn?rs:-rs;
}

ull getll()
{
	ull rs=0;bool sgn=1;char tmp;
	do tmp=getchar();
	while (!isdigit(tmp)&&tmp-'-');
	if (tmp=='-'){tmp=getchar();sgn=1;}
	do rs=(rs<<3)+(rs<<1)+tmp-'0';
	while (isdigit(tmp=getchar()));
	return sgn?rs:-rs;
}

int main()
{
	freopen("walk.in","r",stdin);
	freopen("walk.out","w",stdout);

	long n = getint();
	long m = getint();

	for (long i=1;i<n+1;i++)
	{
		f[0][i] = getint();
	}

	for (long k=1;k<62;k++)
		for (long i=1;i<n+1;i++)
			f[k][i] = f[k-1][f[k-1][i]];

	for (long i=1;i<m+1;i++)
	{
		long u = getint();
		ull s = getll();
		long k = 0;
		while (s)
		{
			if (s&1) u=f[k][u];
			k++;
			s >>= 1;
		}
		printf("%ld\n",u);
	}
	return 0;
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值