线段树扫描线求矩形周长详解

这篇博客详细介绍了如何使用线段树和扫描线算法来求解矩形周长的问题。通过将矩形拆分为上边和下边,按高度排序,利用线段树进行区间操作,实现了从下往上扫描的过程。文章通过逐步解析代码实现,包括线段树的构建、节点更新以及答案的统计方法,最后给出了样例输入和输出。
摘要由CSDN通过智能技术生成

线段树扫描线详解

OI比赛中扫描线是一种很常用的算法,矩形周长是一个模板题。

题目链接

基本思想

比如,对于下面的三个矩形:

        想象有一条扫描线,从下往上扫描完整个图案,每遇到一条上边或者下边就停下来:

    然后每次停下后对区间进行处理,用一个ans代表当前周长,最后ans就是答案。

代码实现

    首先,要先把矩形拆成上边和下边,用1和-1分别代表上边和下边。然后按高度排序,这样数组从前往后处理就相当于扫描线从下往上扫描。如果是下边,就在对应区间上加1,如果是上边,就在对应区间上减1。

    在整个区间上建一棵线段树:

#define lson o<<1
#define rson o<<1|1
#define mid (l+r)/2
struct Tree
{
    int sum;//整个区间被整体覆盖了几次(类似lazytag,但不下传)
    int num;//整个区间被几条互不相交的线段盖(比如,[1,2],[4,5]则为2,[1,3],[4,5]则为1(我习惯用闭区间),[1,4],[2,2],[4,4]也为1)
    int len;//整个区间被覆盖的总长度
    bool lflag;//左端点是否被覆盖(合并用)
    bool rflag;//右端点是否被覆盖(合并用)
}//如果不懂也没有关系,接着往下看

那么pushup要怎么写呢?

void pushup(int o,int l,int r)
{
    if(tree[o].sum)//此区间之前被一整个线段覆盖过
    {
        tree[o].num=1;
        tree[o].len=r-l+1;
    
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值