求最大公约数

#include<iostream>
using namespace std;


//方法一 辗转相除法(问题规模递减得很快, 但求余效率低)
//	在第一次调用之后 可以保证 a>b
int gcd_1(int a, int b)
{
	return b ? gcd_1(b, a%b) : a;
}


//方法二 辗转相减法(避免了方法一的求余低效率, 但是迭代次数更多)
//	需要适当调整使得每一次处理时 a>b
int gcd_2(int a, int b)
{
	if (a < b)
		return gcd_2(b, a);
	return b ? gcd_2(a-b, b):a;
}


/*方法三 结合方法一和方法二 在可除时优先相除否则相减
*	具体规则 a=k*c b=k*d         则有 gcd(a, b) = k*gcd(c, d); 这里的c d均为整数
*			 a=k*c b不能被k整除  则有 gcd(a, b) = gcd(c, b);
*			 a, b都不能被k整除	 则用相减: gcd(a,b) = gcd(a-b, b)
*		当这里的k取2时,则当a b都为奇数时,相减后a-b为偶数 那么该偶数可以以a/2递减
*		并且这里的除2通过移位操作甚至比减法效率更高
*/
int gcd_3(int a, int b)
{
	//为了保证减法不得到负数 先判断 并且调整 使得a>=b
	if (a < b)
		return gcd_3(b, a);


	//这里的终止条件只能是某个数为0 由于前面保证了b<=a 因此直接判断b
	if (b == 0)
		return a;


	if (!(a&1))
	{
		if (!(b&1))	//a b均为偶数
			return gcd_3(a>>1, b>>1)<<1;
		else		//a偶数 b奇数
			return gcd_3(a>>1, b);	
	}
	else
	{
		if (!(b&1))	//a奇数 b偶数
			return gcd_3(a, b>>1);
		else		//a奇数 b奇数
			return gcd_3(a-b, b);
	}
}
int main()
{
	int m, n;
	cout<<"输入测试数m n:"<<endl;
	cin>>m>>n;	
	cout<<m<<"和"<<n<<"的最大公约数为:"<<endl;


//	cout<<gcd_1(m, n)<<endl;
//	cout<<gcd_2(m, n)<<endl;
	cout<<gcd_3(m, n)<<endl;
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值