#include<iostream>
using namespace std;
//方法一 辗转相除法(问题规模递减得很快, 但求余效率低)
// 在第一次调用之后 可以保证 a>b
int gcd_1(int a, int b)
{
return b ? gcd_1(b, a%b) : a;
}
//方法二 辗转相减法(避免了方法一的求余低效率, 但是迭代次数更多)
// 需要适当调整使得每一次处理时 a>b
int gcd_2(int a, int b)
{
if (a < b)
return gcd_2(b, a);
return b ? gcd_2(a-b, b):a;
}
/*方法三 结合方法一和方法二 在可除时优先相除否则相减
* 具体规则 a=k*c b=k*d 则有 gcd(a, b) = k*gcd(c, d); 这里的c d均为整数
* a=k*c b不能被k整除 则有 gcd(a, b) = gcd(c, b);
* a, b都不能被k整除 则用相减: gcd(a,b) = gcd(a-b, b)
* 当这里的k取2时,则当a b都为奇数时,相减后a-b为偶数 那么该偶数可以以a/2递减
* 并且这里的除2通过移位操作甚至比减法效率更高
*/
int gcd_3(int a, int b)
{
//为了保证减法不得到负数 先判断 并且调整 使得a>=b
if (a < b)
return gcd_3(b, a);
//这里的终止条件只能是某个数为0 由于前面保证了b<=a 因此直接判断b
if (b == 0)
return a;
if (!(a&1))
{
if (!(b&1)) //a b均为偶数
return gcd_3(a>>1, b>>1)<<1;
else //a偶数 b奇数
return gcd_3(a>>1, b);
}
else
{
if (!(b&1)) //a奇数 b偶数
return gcd_3(a, b>>1);
else //a奇数 b奇数
return gcd_3(a-b, b);
}
}
int main()
{
int m, n;
cout<<"输入测试数m n:"<<endl;
cin>>m>>n;
cout<<m<<"和"<<n<<"的最大公约数为:"<<endl;
// cout<<gcd_1(m, n)<<endl;
// cout<<gcd_2(m, n)<<endl;
cout<<gcd_3(m, n)<<endl;
return 0;
}