中国剩余定理

中国剩余定理


中国剩余定理又叫孙子定理,在中国南北朝时期(公元5世纪)的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”问题,原文如下:有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。问物几何?宋朝数学家秦九韶于1247年《数书九章》卷一、二《大衍类》对“物不知数”问题做出了完整系统的解答。明朝数学家程大位将解法编成易于上口的《孙子歌诀》:三人同行七十稀,五树梅花廿一支,七子团圆正半月,除百零五使得知。“物不知数”问题实际上是一个同余方程组问题:
{ x ≡ a 1 ( m o d m 1 ) x ≡ a 2 ( m o d m 2 )   ⋮ x ≡ a n ( m o d m n ) \begin{cases} x\equiv a_1(mod\quad m_1)\\ x\equiv a_2(mod\quad m_2)\\ \nobreakspace\vdots\\ x\equiv a_n(mod\quad m_n)\\ \end{cases} xa1(modm1)xa2(modm2) xan(modmn)
M = m 1 × m 2 × ⋯ × m n = ∏ i = 1 n m i M=m_{1}\times m_{2}\times\dots\times m_{n}=\prod_{i=1}^nm_i M=m1×m2××mn=i=1nmi并设 M i = M / m i M_i=M/m_i Mi=M/mi t i = M i − 1 ( m o d   m i ) t_i=M_i^{-1}(mod\space m_i) ti=Mi1(mod mi),当 m 1 , m 2 , … … , m n m_1,m_2,……,m_n m1m2mn互质时,方程组的解为: x = ∑ i = 1 n a i t i M i ( m o d   M ) x=\sum_{i=1}^na_it_iM_i(mod\space M) x=i=1naitiMi(mod M)
证明很简单:
∵ \because 等式 x = a 1 t 1 M 1 + a 2 t 2 M 2 + ⋯ + a n t n M n x=a_1t_1M_1+a_2t_2M_2+\dots+a_nt_nM_n x=a1t1M1+a2t2M2++antnMn的右边除第 i i i项外,都含有因子 m i m_i mi,都能被 m i m_i mi整除。而第 i i i项中 t i M i ≡ 1 ( m o d   m i ) ∴ x ≡ a i ( m o d   m i ) t_iM_i\equiv1(mod\space m_i)\therefore x\equiv a_i(mod\space m_i) tiMi1(mod mi)xai(mod mi)也就是说 x = ∑ i = 1 n a i t i M i x=\sum_{i=1}^na_it_iM_i x=i=1naitiMi满足方程 x ≡ a i ( m o d   m i ) x\equiv a_i(mod\space m_i) xai(mod mi)
问题是,这个解是怎么得来的?还得从简单的问题看起。就以“物不知数”为例,即解如下同余方程组:
{ x ≡ 2 ( m o d   3 ) … … ( 1 ) x ≡ 3 ( m o d   5 ) … … ( 2 ) x ≡ 2 ( m o d   7 ) … … ( 3 ) \begin{cases} x\equiv 2(mod\space 3)\dots\dots(1)\\ x\equiv 3(mod\space 5)\dots\dots(2)\\ x\equiv 2(mod\space 7)\dots\dots(3)\\ \end{cases} x2(mod 3)(1)x3(mod 5)(2)x2(mod 7)(3)
方程(1)和方程(3)余数相同,直接可合并为一个方程 x ≡ 2 ( m o d   21 ) … … ( 4 ) x\equiv 2(mod\space 21)\dots\dots(4) x2(mod 21)(4)

难点在于余数不一样的。对于余数不一样的,最基本的思路是把它化为余数一样的。对于方程(2)来说,可以表示为 x = k × 5 + 3 = ( k × 5 + 1 ) + 2 x=k\times5+3=(k\times5+1)+2 x=k×5+3=(k×5+1)+2,如果把它和方程(4)联立起来解,就只需要 k × 5 + 1 k\times 5+1 k×5+1能被21整除即可。这个很容易,最小k取4即可,此时得到x=23就是方程组的最小解。

这里很容易就解出来是先两个方程联立化为了一个同解方程,然后只剩另一个方程,这时就可以强行化为余数相同的形式。如果方程组中 a 1 、 a 2 、 … 、 a n a_1、a_2、\dots、a_n a1a2an互不相同或不相同的比较多时,这种方法是行不通的。下面不利用两个方程余数相同这一点,寻找更为一般的方法。

对于方程(1)来说,解就是被3除余2的数,这样的数当然有很多,比如5、8、11……,可以表示为3r+2的形式。当然,我们希望找到一个合适的r,使得3r+2被5除余3同时被7除2,这实际上还是原方程组,并没有什么变化,显然并没有什么好的方法可以直接计算出合适的r。一个一个去试都比较麻烦,因为验证3r+2是否满足方程(2)、(3)也并不直接。但是验证是否能被5整除或被7整除甚至同时被5和7整除都很简单,除一下看看就行了。当然这样找出来的3r+2并不是方程组的解,因为它仅仅满足方程(1)。但是这个数求出来是有用的,试想,例如我们找到或者猜到了一个答案,验证的话是不是得用3除一下、用5除一下、用7除一下再看看余数是否满足各个方程。如果找到一个形如3r+2同时又能被5和7整除的数,虽然它只能满足方程(1),但是在验证方程(2)、(3)的时候就好像不存在一样(余数是0)。也就是说,如果只是把它作为解的一部分,加在别的数上,比如说加在一个除5余3的数8上,它并不会影响余数,除5仍然是余3。也就是说,如果a%b=c,则,(a+kb)%b=c。同样,在考查方程(2)的解时,我们找形如5s+3同时又能被3和7整除的数,这样的数与方程(1)的解相加,同样不会影响方程(1)的解,同样地,对于方程(3)我们就找形如7t+2且能被3和5整除的数……一般地,对第(i)个方程,我们就去找满足方程(i)且能被 a 1 ⋅ a 2 ⋯ ⋅ a j ⋯ ⋅ a n ( j ∈ [ 1 , n ] , j ≠ i ) a_1\cdot a_2\dots\cdot a_j\dots\cdot a_n(j\in[1,n],j\neq i) a1a2ajan(j[1,n],j=i)整除的数。这些数全部找出来后,加起来,就是方程组的一个解。比如前面的例子,35就是满第(1)个条件的数,63满足第(2)个方程且又能被3和7整除,30就是既满足第(3)个方程又能被3和5整除,它们的和128就是方程组的一个解。显然 x + k ⋅ 105 ( 3 、 5 、 7 的 最 小 公 倍 数 ) x+k\cdot 105(3、5、7的最小公倍数) x+k105(357)都是方程组的解,其中最小的正整数解应该是128-105=23,这个解在mod 105的意义下是唯一的。

下面看一看能不能不用遍历法来找既满足 x ≡ a i ( m o d   m i ) x\equiv a_i(mod\space m_i) xai(mod mi)又能被 M i M_i Mi整除的数( M i M_i Mi的意义同前,表示除 a i a_i ai外其余模数的积)。显然,此时 x = p ⋅ m i + a i = q ⋅ M i x=p\cdot m_i+a_i=q\cdot M_i x=pmi+ai=qMi,因为 m i m_i mi M i M_i Mi是互质的,用扩展欧几里得算法(其实就是辗转相除法)求解 p ⋅ m i + q ⋅ M i = 1 p\cdot m_i+q\cdot M_i=1 pmi+qMi=1是没有问题的,再乘以 a i a_i ai不难得到x。这里稍稍作了一点变型。还是以实例说明一下。比如,要找除以3以2且能同时被5和7整除(也就是能被35整除)的数,用辗转相除法,可以得到 12 × 3 + ( − 1 ) × 35 = 1 12\times 3+(-1)\times 35=1 12×3+(1)×35=1,在模3的情况下就有 2 × 35 = 23 × 3 + 1 2\times 35=23\times 3+1 2×35=23×3+1,也就是找到了35在mod 3时的乘法逆元是2,然后,在等式两边同时乘2就可得到 p ≡ 4 ( m o d   3 ) ≡ 1 ( m o d   3 ) p\equiv 4(mod\space 3)\equiv 1(mod \space 3) p4(mod 3)1(mod 3)所以此时方程(1)的解就是 1 × 35 = 35 1\times 35=35 1×35=35。对应的,对于通式 p ⋅ m i + a i = q ⋅ M i p\cdot m_i+a_i=q\cdot M_i pmi+ai=qMi,先计算出 M i M_i Mi m i m_i mi的逆元 t i t_i ti,然后两边同时乘上逆元 t i t_i ti,则可得到 q = a i ⋅ t i ( m o d   m i ) q=a_i\cdot t_i(mod\space m_i) q=aiti(mod mi)这时方程的解就是 a i ⋅ t i ⋅ M i ( m o d   m i ) a_i\cdot t_i\cdot M_i(mod\space m_i) aitiMi(mod mi)这样就得到了中国剩余定理。

对于较小的数字,遍历很容易求解,所以很难想到用逆元的办法。但是对于较大的数,辗转相除求逆元是肯定可以并且应该是比遍历更快的。通式(公式)的推导不用逆元就难以解释了。

宋朝数学家秦九韶于1247年《数书九章》卷一、二《大衍类》对“物不知数”问题做出了完整系统的解答。明朝数学家程大位将解法编成易于上口的《孙子歌诀》:

三人同行七十稀,五树梅花廿一支,七子团圆正半月,除百零五使得知

这个歌诀给出了模数为3、5、7时候的同余方程的秦九韶解法。意思是:将除以3得到的余数乘以70,将除以5得到的余数乘以21,将除以7得到的余数乘以15,全部加起来后除以105(或者105的倍数),得到的余数就是答案。这里面的70就是35乘以35模3的逆元2得到的。而后面只乘21和15是因为21模5的逆元就是1,15模7的逆元还是1。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值