题目描述
一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法
思路
对于本题,前提只有 一次 1阶或者2阶的跳法。
a.如果两种跳法,1阶或者2阶,那么假定第一次跳的是一阶,那么剩下的是n-1个台阶,跳法是f(n-1);
b.假定第一次跳的是2阶,那么剩下的是n-2个台阶,跳法是f(n-2)
c.由a\b假设可以得出总跳法为: f(n) = f(n-1) + f(n-2)
d.然后通过实际的情况可以得出:只有一阶的时候 f(1) = 1 ,只有两阶的时候可以有 f(2) = 2
e.可以发现最终得出的是一个斐波那契数列:
| 1, (n=1)
f(n) = | 2, (n=2)
| f(n-1)+f(n-2) ,(n>2,n为整数)
递归思路,速度慢
public class Solution {
public int JumpFloor(int target) {
if(target <= 2) return target;
else {
return JumpFloor(target - 1) + JumpFloor(target - 2);
}
}
}
斐波那契数列首选,速度快
public class Solution {
public int JumpFloor(int target) {
if(target <= 2) return target;
int l = 1, r = 2, m = 0;
for(int i = 3; i <= target; i++) {
m = l;
l = r;
r = m + r;
}
return r;
}
}