寻找直方图中面积最大的矩形

本文探讨了一道计算机算法问题,如何在给定直方图的情况下找到面积最大的矩形。直方图的每个单元宽度固定为1,高度由非负整数数组定义。通过分析示例,指出解决此类问题的关键在于应用类似于木桶原理的思路,即最矮的矩形决定了最大面积。计算过程中需要维护当前高度之前最矮矩形的信息。
摘要由CSDN通过智能技术生成
题目详情

给定直方图,每一小块的height由N个非负整数所确定,每一小块的width都为1,请找出直方图中面积最大的矩形。


   如下图所示,直方图中每一块的宽度都是1,每一块给定的高度分别是[2,1,5,6,2,3]:



   那么上述直方图中,面积最大的矩形便是下图所示的阴影部分的面积,面积= 10单位。


这道题简单,有点类似木桶原理,即最矮的那块矩形决定最终的面积。方法是依次处理每个矩形块,计算该矩形块之前面积最大的矩形,在这个过程中要知道当前矩形前最矮的矩形块。

#include <iostream>

using namespace std;

int largestRectangleArea(const int *height,int n)
{
    int maxarea=0;
    int minh=0;
    int sum=0;
    for(int i=0;i<n;i++)
    {
        minh=height[i];
        sum=0;
        for(int j=i;j>=0;j--)
        {
            if(height[j]<minh) minh=height[j];
            sum=minh*(i-j+1);
            if(sum>maxarea)
                maxarea=sum;
        }
    }
    return maxarea;
}
int main()
{
    int a[6]={2,1,5,6,2,3};
    cout<<largestRectangleArea(a,6)<<endl;
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值