从斐波那契数列java求解到对尾递归的理解

 

 

 

package com.furun.demo.rec;

/**
 * @author wufurun
 * @version 1.0
 * @ClassName: Fibonacci
 * @Description: 斐波那契数列 1 1 2 3 5 8 13  即 f(n) = f(n-1)+f(n-2)
 * @date 2021/4/414:12
 */
public class Fibonacci {
    private static int data[] = new int[46];
    public static void main(String[] args) {
        //
        long start = 0;
        for (int i = 1; i < 45; i++) {
            start = System.currentTimeMillis();
            System.out.println(i + ":" + fab(i) + " 所耗费的时间为" + (System.currentTimeMillis() - start) + "ms");

            start = System.currentTimeMillis();
            System.out.println(i + ":" + noFab(i) + " 所耗费的时间为" + (System.currentTimeMillis() - start) + "ms");

            start = System.currentTimeMillis();
            System.out.println(i + ":" + fab2(i) + " 所耗费的时间为" + (System.currentTimeMillis() - start) + "ms");

            start = System.currentTimeMillis();
            System.out.println(i + ":" + fab3(i) + " 所耗费的时间为" + (System.currentTimeMillis() - start) + "ms");

            start = System.currentTimeMillis();
            System.out.println(i + ":" + lfab(1,1,i) + " 所耗费的时间为" + (System.currentTimeMillis() - start) + "ms");
        }
    }
    /**
     * 1、 最直接的想法递归  时间复杂度O(2^n),空间复杂度O(2^n)
     */
    public static int fab(int n){
        if(n<3) return 1;
        return fab(n-1)+fab(n-2);
    }
    /**
     * 2、 所有的递归一定可以用非递归实现 O(n),空间复杂度O(1)
     */
    public static int noFab(int n){
        if(n<3) return 1;
        int a = 1;
        int b = 1;
        int c = 0;
        for (int i = 3; i <=n; i++) {
            c = a+b;
            a = b;
            b = c;
        }
        return c;
    }
    /**
     * 3、 利用数组 时间复杂度O(n),空间复杂度O(n)
     */
    public static int fab2(int n){
        if(n<3) return 1;
        int arr[]=new int[n];
        arr[0] = 1;arr[1]=1;
        for (int i = 3; i <=n ; i++) {
            arr[i-1] = arr[i-2]+arr[i-3];
        }
        return arr[n-1];
    }
    /**
     * 4、利用缓存数组data[0],data[1] ,data[2]没存值  时间复杂度O(n),空间复杂度O(n)
     */
    public static int fab3(int n){ // 利用缓存   时间复杂度O(n),空间复杂度O(n)
        if(n<3) return 1;
        if(data[n]>0){
            return data[n];
        }
        data[n] = fab3(n-1)+fab3(n-2);
        return data[n];
    }
    /**
     * 5、尾部递归 时间复杂度O(n),空间复杂度O(n)
     *
     *
     * @param pre 当前节点的前一个节点的值
     * @param res 当前节点的值
     * @param n 为算的次数,即第几个元素
     *
     *从第二个元素看起,这时第二个元素的res = 1,第一个元素的值pre=1,那么第三个元素的res = pre+res,第二个元素就pre = res
     * 递归是从第n个元素开始计算;而尾递归则是从第一个元素开始计算,归纳总结到第n个元素
     *
     */
    public static int lfab(int pre,int res,int n){ // 时间复杂度O(n),空间复杂度O(n)
        if(n<3) return res;
        return lfab(res,pre+res,n-1);
    }

}


 

内容概要:本文详细探讨了智慧医疗建设的历程、现状、挑战及未来发展趋势。智慧医疗建设经历了信息化、数字化和数智化三个阶段,政策、需求和技术是其发展的三大推动力。文章指出,当前智慧医疗已从数据收集与治理阶段迈向数据价值应用阶段,特别是在高质量数据库建设、云计算、人工智能等技术的推动下,实现了临床科研、药物研发、真实世界研究及数字营销等多个场景的商业化落地。此外,文中还分析了医疗信息化系统同质化、数据孤岛、互联互通等痛点,并提出了云化转型、新产品、新技术和新服务作为突破方向。最后,通过奈特瑞、医渡科技、东软集团三个企业案例,展示了不同企业在智慧医疗领域的创新实践。 适合人群:医疗信息化从业者、医疗行业研究人员、医疗机构管理者、医疗科技企业相关人员、政策制定者及对智慧医疗感兴趣的投资者。 使用场景及目标:①了解智慧医疗建设的阶段性特征和发展趋势;②掌握医疗信息化建设中的关键技术和应用场景;③探讨解决医疗信息化系统同质化、数据孤岛等问题的策略;④学习企业如何通过新产品、新技术和新服务实现突破,推动智慧医疗发展。 其他说明:本文通过对智慧医疗建设的深入剖析,强调了政策导向、技术创新和市场需求的重要性,为企业和政策制定者提供了宝贵的参考。同时,文章也揭示了未来智慧医疗发展的广阔前景,特别是在数据资产化和数智化应用方面的巨大潜力。阅读时应注意结合政策背景和技术发展趋势,关注行业动态和企业创新实践。
内容概要:本文汇总了移动应用开发领域的VIP学习资源,涵盖从基础入门到进阶提高的全方位内容。基础资源方面,推荐了针对Android、iOS、React Native的多本经典书籍及Udemy、Coursera、edX等平台上的在线课程和YouTube视频教程,帮助初学者掌握UI设计、数据存储、前后端交互等基本技能。进阶资源则聚焦于高效编程、性能优化、架构设计等深层次主题,同样提供了书籍、在线课程和视频教程。对于跨平台开发,重点介绍了React Native和Flutter的相关学习资料。此外,还列举了Android Studio、Xcode等常用开发工具及其配套调试工具,以及Flutter Gallery、React Native Showcase等开源项目作为实践参考。最后,提及了Stack Overflow、Reddit - AndroidDev等社区论坛,为开发者提供交流平台。 适合人群:对移动应用开发感兴趣的初学者、有一定经验的研发人员及希望深入了解跨平台开发的开发者。 使用场景及目标:①初学者可以通过书籍、在线课程和视频教程系统学习移动应用开发的基础知识;②进阶者可利用进阶资源深入研究特定技术领域,如性能优化、架构设计等;③跨平台开发者可以借助React Native和Flutter的学习资料实现多平台应用开发;④使用推荐的开发工具和调试工具提高开发效率,解决实际问题;⑤通过开源项目和社区论坛获取实践经验和技术支持。 阅读建议:根据个人技术水平选择合适的资源进行学习,注重理论与实践相结合,积极参与社区交流,不断提升自己的移动应用开发能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值