package com.furun.demo.rec;
/**
* @author wufurun
* @version 1.0
* @ClassName: Fibonacci
* @Description: 斐波那契数列 1 1 2 3 5 8 13 即 f(n) = f(n-1)+f(n-2)
* @date 2021/4/414:12
*/
public class Fibonacci {
private static int data[] = new int[46];
public static void main(String[] args) {
//
long start = 0;
for (int i = 1; i < 45; i++) {
start = System.currentTimeMillis();
System.out.println(i + ":" + fab(i) + " 所耗费的时间为" + (System.currentTimeMillis() - start) + "ms");
start = System.currentTimeMillis();
System.out.println(i + ":" + noFab(i) + " 所耗费的时间为" + (System.currentTimeMillis() - start) + "ms");
start = System.currentTimeMillis();
System.out.println(i + ":" + fab2(i) + " 所耗费的时间为" + (System.currentTimeMillis() - start) + "ms");
start = System.currentTimeMillis();
System.out.println(i + ":" + fab3(i) + " 所耗费的时间为" + (System.currentTimeMillis() - start) + "ms");
start = System.currentTimeMillis();
System.out.println(i + ":" + lfab(1,1,i) + " 所耗费的时间为" + (System.currentTimeMillis() - start) + "ms");
}
}
/**
* 1、 最直接的想法递归 时间复杂度O(2^n),空间复杂度O(2^n)
*/
public static int fab(int n){
if(n<3) return 1;
return fab(n-1)+fab(n-2);
}
/**
* 2、 所有的递归一定可以用非递归实现 O(n),空间复杂度O(1)
*/
public static int noFab(int n){
if(n<3) return 1;
int a = 1;
int b = 1;
int c = 0;
for (int i = 3; i <=n; i++) {
c = a+b;
a = b;
b = c;
}
return c;
}
/**
* 3、 利用数组 时间复杂度O(n),空间复杂度O(n)
*/
public static int fab2(int n){
if(n<3) return 1;
int arr[]=new int[n];
arr[0] = 1;arr[1]=1;
for (int i = 3; i <=n ; i++) {
arr[i-1] = arr[i-2]+arr[i-3];
}
return arr[n-1];
}
/**
* 4、利用缓存数组data[0],data[1] ,data[2]没存值 时间复杂度O(n),空间复杂度O(n)
*/
public static int fab3(int n){ // 利用缓存 时间复杂度O(n),空间复杂度O(n)
if(n<3) return 1;
if(data[n]>0){
return data[n];
}
data[n] = fab3(n-1)+fab3(n-2);
return data[n];
}
/**
* 5、尾部递归 时间复杂度O(n),空间复杂度O(n)
*
*
* @param pre 当前节点的前一个节点的值
* @param res 当前节点的值
* @param n 为算的次数,即第几个元素
*
*从第二个元素看起,这时第二个元素的res = 1,第一个元素的值pre=1,那么第三个元素的res = pre+res,第二个元素就pre = res
* 递归是从第n个元素开始计算;而尾递归则是从第一个元素开始计算,归纳总结到第n个元素
*
*/
public static int lfab(int pre,int res,int n){ // 时间复杂度O(n),空间复杂度O(n)
if(n<3) return res;
return lfab(res,pre+res,n-1);
}
}