从斐波那契数列java求解到对尾递归的理解

 

 

 

package com.furun.demo.rec;

/**
 * @author wufurun
 * @version 1.0
 * @ClassName: Fibonacci
 * @Description: 斐波那契数列 1 1 2 3 5 8 13  即 f(n) = f(n-1)+f(n-2)
 * @date 2021/4/414:12
 */
public class Fibonacci {
    private static int data[] = new int[46];
    public static void main(String[] args) {
        //
        long start = 0;
        for (int i = 1; i < 45; i++) {
            start = System.currentTimeMillis();
            System.out.println(i + ":" + fab(i) + " 所耗费的时间为" + (System.currentTimeMillis() - start) + "ms");

            start = System.currentTimeMillis();
            System.out.println(i + ":" + noFab(i) + " 所耗费的时间为" + (System.currentTimeMillis() - start) + "ms");

            start = System.currentTimeMillis();
            System.out.println(i + ":" + fab2(i) + " 所耗费的时间为" + (System.currentTimeMillis() - start) + "ms");

            start = System.currentTimeMillis();
            System.out.println(i + ":" + fab3(i) + " 所耗费的时间为" + (System.currentTimeMillis() - start) + "ms");

            start = System.currentTimeMillis();
            System.out.println(i + ":" + lfab(1,1,i) + " 所耗费的时间为" + (System.currentTimeMillis() - start) + "ms");
        }
    }
    /**
     * 1、 最直接的想法递归  时间复杂度O(2^n),空间复杂度O(2^n)
     */
    public static int fab(int n){
        if(n<3) return 1;
        return fab(n-1)+fab(n-2);
    }
    /**
     * 2、 所有的递归一定可以用非递归实现 O(n),空间复杂度O(1)
     */
    public static int noFab(int n){
        if(n<3) return 1;
        int a = 1;
        int b = 1;
        int c = 0;
        for (int i = 3; i <=n; i++) {
            c = a+b;
            a = b;
            b = c;
        }
        return c;
    }
    /**
     * 3、 利用数组 时间复杂度O(n),空间复杂度O(n)
     */
    public static int fab2(int n){
        if(n<3) return 1;
        int arr[]=new int[n];
        arr[0] = 1;arr[1]=1;
        for (int i = 3; i <=n ; i++) {
            arr[i-1] = arr[i-2]+arr[i-3];
        }
        return arr[n-1];
    }
    /**
     * 4、利用缓存数组data[0],data[1] ,data[2]没存值  时间复杂度O(n),空间复杂度O(n)
     */
    public static int fab3(int n){ // 利用缓存   时间复杂度O(n),空间复杂度O(n)
        if(n<3) return 1;
        if(data[n]>0){
            return data[n];
        }
        data[n] = fab3(n-1)+fab3(n-2);
        return data[n];
    }
    /**
     * 5、尾部递归 时间复杂度O(n),空间复杂度O(n)
     *
     *
     * @param pre 当前节点的前一个节点的值
     * @param res 当前节点的值
     * @param n 为算的次数,即第几个元素
     *
     *从第二个元素看起,这时第二个元素的res = 1,第一个元素的值pre=1,那么第三个元素的res = pre+res,第二个元素就pre = res
     * 递归是从第n个元素开始计算;而尾递归则是从第一个元素开始计算,归纳总结到第n个元素
     *
     */
    public static int lfab(int pre,int res,int n){ // 时间复杂度O(n),空间复杂度O(n)
        if(n<3) return res;
        return lfab(res,pre+res,n-1);
    }

}


 

内容概要:本文详细介绍了施耐德M580系列PLC的存储结构、系统硬件架构、上电写入程序及CPU冗余特性。在存储结构方面,涵盖拓扑寻址、Device DDT远程寻址以及寄存器寻址三种方式,详细解释了不同类型的寻址方法及其应用场景。系统硬件架构部分,阐述了最小系统的构建要素,包括CPU、机架和模块的选择与配置,并介绍了常见的系统拓扑结构,如简单的机架间拓扑和远程子站以太网菊花链等。上电写入程序环节,说明了通过USB和以太网两种接口进行程序下载的具体步骤,特别是针对初次下载时IP地址的设置方法。最后,CPU冗余部分重点描述了热备功能的实现机制,包括IP通讯地址配置和热备拓扑结构。 适合人群:从事工业自动化领域工作的技术人员,特别是对PLC编程及系统集成有一定了解的工程师。 使用场景及目标:①帮助工程师理解施耐德M580系列PLC的寻址机制,以便更好地进行模块配置和编程;②指导工程师完成最小系统的搭建,优化系统拓扑结构的设计;③提供详细的上电写入程序指南,确保程序下载顺利进行;④解释CPU冗余的实现方式,提高系统的稳定性和可靠性。 其他说明:文中还涉及一些特殊模块的功能介绍,如定时器事件和Modbus串口通讯模块,这些内容有助于用户深入了解M580系列PLC的高级应用。此外,附录部分提供了远程子站和热备冗余系统的实物图片,便于用户直观理解相关概念。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值