文献阅读1

Personalized Federated Learning for Intelligent IoT Applications: A Cloud-Edge based Framework(智能物联网应用的个性化联合学习:基于云边缘的框架)

摘要
物联网(IoT)已广泛渗透到现代生活的各个方面,并且出现了许多智能IoT服务和应用程序。最近,提出了联合学习以通过在IoT设备上利用大量用户生成的数据样本同时防止数据泄漏来训练全局共享模型。但是,复杂物联网环境中固有的设备,统计和模型异质性给传统的联合学习带来了巨大挑战,使其不适合直接部署。在本文中,我们提倡在云边缘架构中针对智能物联网应用的个性化联合学习框架。为了应对物联网环境中的异构性问题,我们研究了新兴的个性化联合学习方法,这些方法能够减轻异构性在不同方面造成的负面影响。借助边缘计算的强大功能,还可以满足智能物联网应用中对快速处理能力和低延迟的要求。我们最终提供了一个基于IoT的人类活动识别案例研究,以证明个性化联合学习对智能IoT应用的有效性。
索引词:边缘计算,联合学习,物联网,个性化
一、引言
智能设备,移动网络和计算技术的激增引发了物联网(IoT)的新时代,它有望在我们现代生活的各个方面取得重大进展,包括智能医疗保健系统,智能交通基础设施等。通过将大量智能设备连接到IoT中,我们能够访问大量用户数据以产生见解,训练任务指定的机器学习模型并最终提供高质量的智能服务和产品。为了获得物联网数据的好处,主要方法是将分散的用户数据收集到中央云以进行建模,然后将经过训练的模型传输到用户设备以进行任务推理。这种方法可能无效,因为数据传输和模型传递将导致较高的通信成本和延迟。此外,由于需要将用户敏感数据上传到远程云,因此可能会带来很大的隐私泄露风险。在日益严格的数据隐私保护法规(例如通用数据保护法规(GDPR))下,数据移动将面临前所未有的困难。一种替代方法是在每个IoT设备上使用其本地数据来训练和更新模型,而与其他设备隔离。但是,此方法的一个主要障碍在于对在计算,能源和内存资源有限的物联网设备上部署和训练模型的高资源需求。此外,数据样本不足和本地数据移位会导致更差的模型。
联合学习是解决分布式数据训练的一种复杂解决方案,它可以通过汇总和平均由IoT设备上传的本地计算更新来共同训练高质量的共享模型。这种方法的主要优势是模型的解耦无需直接访问培训数据即可进行培训,因此联合学习能够学习令人满意的全局模型而不会损害用户数据的隐私。然而,在复杂的物联网环境中,联合学习过程的关键方面仍存在三个主要挑战,这使其不适合在物联网应用中直接部署联合学习。
联合学习面临的这三个挑战可以概括为:
(1)设备的异构性,例如存储,计算和通信能力的变化;
(2)统计异质性,例如从不同设备生成的数据的非IID(又称非独立且均等分布)性质;
(3)模型异质性,即不同设备想要根据其应用环境定制其模型的情况。
具体而言,资源受限的物联网设备将仅允许在某些网络条件下训练轻量级模型,并且可能进一步导致高通信成本,散乱性和容错性问题,而传统的联合学习无法很好地解决这些问题。由于联合学习侧重于通过提取所有参与设备的公知知识来实现​​高质量的全局模型,因此它无法捕获每个设备的个人信息,从而导致推理或分类的性能下降。此外,传统的联合学习要求所有参与的设备就共同的协作培训模型达成共识,这在现实的复杂物联网应用中是不切实际的。
为了应对这些异质性挑战,一种有效的方法是在设备,数据和模型级别执行个性化设置,以减轻异质性并为每个设备获得高质量的个性化模型。由于其广泛的应用场景(例如,基于IoT的个性化智能医疗保健,智能家居服务和应用,细粒度的位置感知推荐服务以及本地智能视频分析),个性化学习最近引起了广泛关注。我们研究了新兴的个性化联合学习方法,这些方法可以替代传统的联合学习,并将其归纳为四类:联合转移学习,联合元学习,联合多任务学习和联合蒸馏。这些方法能够缓解复杂的物联网环境中的各种异质性问题,并有望成为许多新兴智能物联网应用的使能技术。
在本文中,我们提出了一种名为PerFit的协同云边缘框架,用于个性化联合学习,该框架以整体方式缓解了IoT应用中固有的设备异质性,统计异质性和模型异质性。为了解决设备异构性中较高的通信和计算成本问题,我们诉诸于边缘计算,它在物联网设备附近带来了必要的按需计算能力。因此,每个物联网设备都可以选择将其计算密集型学习任务转移到边缘,从而满足对快速处理能力和低延迟的要求。此外,边缘计算可以通过将数据本地附近存储(例如,在智能家庭应用的家庭智能边缘网关中)而不将数据上传到远程云来缓解隐私问题。此外,可以采用隐私和安全保护技术(例如差分隐私和同态加密)来提高隐私保护级别。对于统计和模型异质性,此框架还使终端设备和边缘服务器可以在云边缘范式的中央云服务器的协调下共同训练全局模型。在通过联合学习训练全局模型之后,在设备端,可以采用不同种类的个性化联合学习方法,以实现针对不同设备的个性化模型部署,以适应其应用需求。我们进一步说明了基于特定应用场景(基于IoT的活动识别)的代表性案例研究,该案例演示了PerFit在高精度和低通信开销方面的卓越性能。
本文的其余部分安排如下。下一节讨论了物联网环境中联合学习的主要挑战。为了应对这些挑战,我们提倡基于云边缘架构的个性化联合学习框架,并研究一些针对个性化的新兴解决方案。然后,我们以一项具有启发性的人类活动识别研究案例来评估个性化联合学习方法的性能。最后,我们总结了论文。

二、物联网环境中联合学习的主要挑战
在本节中,我们首先详细介绍在物联网环境中使用传统联合学习时的主要挑战和潜在的负面影响。

三、个性化联合学习的云边缘框架
如第二节所述,物联网应用中存在设备异质性,统计异质性和模型异质性,这给传统的联合学习带来了巨大挑战。解决这些异质性问题的有效解决方案可以归结为个性化。通过设计和利用更高级的联合学习方法,我们旨在实现极大的灵活性,以便各个设备可以制作自己的个性化模型来满足其资源和应用需求,同时享受联合学习带来的好处,以实现集体知识共享。
我们提倡针对智能物联网应用的个性化联合学习框架,以整体方式应对异构挑战。如图1所示,我们提出的PerFit框架采用云边缘架构,可在IoT设备附近带来必要的按需边缘计算能力。因此,每个物联网设备可以选择通过无线连接将其密集的计算任务转移到边缘(即,家庭中的边缘网关,办公室中的边缘服务器或户外的5G MEC服务器),因此对高处理效率和低延迟的要求物联网应用的数量可以实现。
为了支持智能物联网应用的协作学习,然后在终端设备,边缘服务器和远程云之间采用联合学习(FL),这可以通过汇总来自IoT用户的本地计算模型来联合训练共享的全局模型。同时将所有敏感数据保留在设备上。为了解决异构性问题,我们将进一步进行个性化设置,并采用一些个性化的联合学习方法来微调每个设备的学习模型。具体来说,PerFit中的协作学习过程主要包括以下三个阶段。
1、卸载阶段。当边缘值得信赖时(例如在家中的边缘网关),IoT设备用户可以将其整个学习模型和数据样本卸载到边缘以进行快速计算。否则,设备用户将通过在设备上本地保留输入层及其数据样本,并将剩余的模型层卸载到边缘进行设备边缘协作计算,从而进行模型划分。
2、学习阶段。设备和边缘根据个人数据样本协作计算本地模型,然后将本地模型信息传输到云服务器。云服务器汇总参与的边缘提交的本地模型信息,并将它们平均化为全局模型以发送回边缘。重复进行此类模型信息交换过程,直到经过一定次数的迭代收敛为止。因此,可以实现高质量的全局模型,然后将其传输到边缘进行进一步的个性化设置。
3、个性化阶段。为了捕获特定的个人特征和要求,每台设备都将根据全局模型信息及其自身的个人信息(即本地数据)训练个性化模型。此阶段的具体学习操作取决于所采用的个性化联合学习机制,这将在下一部分中进行详细说明。
提出的PerFit框架利用边缘计算来通过计算分流来减轻散乱效应,从而增强单个设备的计算能力。如果我们进一步在边缘服务器上进行本地模型聚合,则还可以避免大型设备通过昂贵的骨干网带宽直接与云服务器通信,从而有助于减少通信开销[。此外,通过执行个性化设置,我们可以在一些资源有限的设备上部署轻量级的个性化模型(例如,通过模型修剪或转移学习)。这些将有助于减轻通信和计算资源中设备的异质性。而且,统计异质性和模型异质性可以得到很好的支持,因为我们可以针对不同的单个设备利用个性化的模型和机制,以针对其本地数据特征,应用程序要求和部署环境量身定制。
请注意,采用的个性化联合学习机制将是PerFit中协作学习的核心,这也决定了云服务器与边缘之间的模型信息交换。例如,由于联邦转移学习的特定设置,因此也仅允许传输部分模型参数,我们将在下一部分中进行讨论。如果面临在不同的IoT设备上训练不同模型的情况,则可以将本地模型的输出类概率封装为其本地信息,以通过联合蒸馏方法发送到云服务器。通过在边缘和云之间相应地交换不同种类的模型信息,PerFit可以灵活地与多种个性化联合方法集成。通过解决复杂物联网环境中固有的异构性问题并默认情况下确保用户隐私,PerFit可以成为大规模实际部署的理想选择。

四、个性化的联合学习机制
在本节中,我们回顾并阐述几种可以与PerFit框架集成以用于智能IoT应用程序的关键的个性化联合学习机制。这些个性化的联合学习方案可以按联合转移学习,联合元学习,联合多任务学习和联合蒸馏进行分类,具体如下:

联合转移学习:
转移学习旨在将知识(即,训练过的模型参数)从源域转移到目标域。在联合学习的环境中,领域通常是不同的但相互关联,这使得知识转移成为可能。联邦转移学习的基本思想是将全球共享的模型转移到分布式IoT设备以进行进一步的个性化,以减轻联合学习中固有的统计异构性(非IID数据分布)。考虑到深度神经网络的体系结构和通信过载,有两种主要的方法可以通过联合转移学习进行个性化。
注意,受设备的计算资源约束,在获得个性化模型之后,可以进一步利用模型修剪和压缩技术来实现轻量级模型部署。

联合元学习:
物联网环境中的联合学习通常面临统计异质性,例如非IID和不平衡的数据分布,这对于确保每个参与的物联网设备的高质量性能都具有挑战性。为了解决这个问题,一些研究人员致力于通过利用元学习的个性化功能来改进FedAvg算法。在元学习中,该模型由元学习者训练,该元学习者能够学习大量相似的任务,并且训练后的模型的目标是从少量新数据中快速适应新的相似任务。通过将元学习中的类似任务视为设备的个性化模型,自然而然的选择是将联合学习与元学习相集成,以通过协作学习实现个性化。
提出了一种新的FedAvg算法修改方法,称为Personalized FedAvg,方法是使用模型不可知元学习(MAML)(一种基于梯度的元学习算法)引入微调阶段。因此,可以对通过联合学习训练的全局模型进行个性化设置,以捕获单个设备的细粒度信息,从而提高每个物联网设备的性能。 MAML可以灵活地与任何适合基于梯度训练的模型表示相结合。此外,它可以仅从几个数据样本中快速学习和适应。
由于联合元学习方法经常利用复杂的训练算法,因此其实现复杂度高于联合转移学习方法。但是,通过联合元学习获得的学习模型更加健壮,并且对于那些数据样本很少的设备可能非常有用。

联合多任务学习:
通常,联合转移学习和联合元学习旨在通过微调的个性化在IoT设备之间学习相同或相似任务的共享模型。沿着不同的方向,联合多任务学习旨在同时学习针对不同设备的不同任务,并尝试捕获其中的模型关系而没有隐私风险。通过模型关系,每个设备的模型都可以获取其他设备的信息。此外,为每个设备学习的模型始终是个性化的。在联合多任务学习训练中,云服务器基于物联网设备上传的模型参数来学习多个学习任务之间的模型关系。然后,每个设备都可以使用其本地数据和当前模型关系更新其自己的模型参数。通过对云服务器中的模型关系和每个任务的模型参数进行交替优化,联合多任务学习使参与的物联网设备协作协作培训其本地模型,从而减轻统计风险。
史密斯等通过联合多任务学习框架开发了一种分布式优化方法MOCHA。对于高昂的通信成本,MOCHA允许计算的灵活性,这为通信带来了直接的好处,因为执行附加的本地计算将导致在联盟设置中进行较少的通信回合。为了减轻流浪汉的影响,作者建议为计算资源有限的设备近似计算本地更新。此外,异步更新方案也是避免混乱的另一种方法。此外,通过允许参与设备定期退出,MOCHA具有强大的容错能力。由于复杂物联网环境中固有的设备异构性对于联合学习的性能至关重要,因此联合多任务学习对智能物联网应用具有重要意义。然而,由于联合多任务学习为每个任务生成一个模型,因此要求所有客户端(例如IoT设备)参与每次迭代,这在IoT应用程序中是不切实际的。为了解决这个问题,我们认为基于集群的联合多任务学习是研究中一个有希望的方向。
联合蒸馏:
在原始的联合学习框架中,所有客户端(例如,参与的边缘和设备)必须就在全局服务器和本地客户端上训练的模型的特定体系结构达成共识。但是,在一些现实的业务环境中,例如医疗保健和金融,每个参与者都有能力和愿望设计自己的独特模型,并且由于隐私和知识产权问题,可能不愿意共享模型详细信息。这种模型异质性对传统的联合学习提出了新的挑战。
为了应对这一挑战,提出FedMD,这是一种新的联合学习框架,使参与者能够利用知识提炼的力量独立设计自己的模型。在FedMD中,每个客户都需要将其学到的知识转换为标准格式,其他人可以理解这些格式而无需共享数据和模型架构。然后,中央服务器收集这些知识以计算共识,并将共识进一步分发给参与的客户端。知识转换步骤可以通过知识蒸馏来实现,例如,使用由客户端模型产生的类概率作为标准格。通过这种方式,云服务器对每个数据样本的类概率进行汇总和平均化然后分发给客户以指导他们的更新。提出了联邦蒸馏法,其中每个客户将自己视为学生,并将其他所有客户的平均模型输出视为其老师的输出。师生输出差异为学生提供学习方向。在这里值得注意的是,要在联合学习中进行知识提炼,就需要一个公共数据集,因为应该使用相同的训练数据样本来评估教师和学生的输出。此外,联邦蒸馏不仅交换模型参数,而且交换模型输出,因此可以显着降低通信成本
日期扩充:
由于用户的个人生成的数据自然呈现出高度偏斜且非IID的分布,这可能会大大降低模型的性能,因此出现了致力于数据增强以促进个性化联合学习的新兴作品。赵等。 [12]提出了一种数据共享策略,即分配少量的全局数据,其中包含从云到边缘客户端的类之间的均匀分布。这样,可以在一定程度上缓解客户端数据高度不平衡的分布,从而可以提高个性化模型的性能。但是,直接将全局数据分发给边缘客户端会带来很大的隐私泄漏风险,需要使用此方法在数据隐私保护和性能改进之间进行权衡。而且,全球共享数据和用户本地数据两者之间的分布差异也会带来性能下降。
为了纠正不平衡且非IID的本地数据集而又不损害用户隐私,我们采用了一些过采样技术和具有生成能力的深度学习方法。例如联邦扩充(FAug),其中每个客户共同训练生成模型,从而扩充其本地数据以生成IID数据集。具体地,每个边缘客户端识别其数据样本中缺少的标签,称为目标标签,然后将这些目标标签的少量种子数据样本上载到服务器。服务器对上传的种子数据样本进行过采样,然后训练一个生成对抗网络(GAN)。最后,每台设备都可以下载经过训练的GAN生成器,以补充其目标标签,直到达到平衡的数据集为止。借助数据扩充,每个客户端都可以基于生成的平衡数据集训练更加个性化和准确的分类或推断模型。值得注意的是,FAug中的服务器应该是可信任的,以便用户愿意上传其个人数据。

五、案例研究
在本节中,我们首先描述实验设置,然后在准确性和通信大小方面评估具有不同种类异质性的不同个性化联合学习方法。
六、结论
在本文中,我们提出了PerFit,这是一种云边缘架构中的个性化联合学习框架,用于具有数据隐私保护功能的智能IoT应用程序。 PerFit通过汇总来自分布式IoT设备的本地更新并利用边缘计算的优点,可以学习全球共享的模型。为了解决物联网环境中的设备,统计和模型异质性,PerFit可以自然地集成各种个性化的联合学习方法,从而实现物联网应用中设备的个性化和增强的性能。我们通过人类活动识别任务的案例研究来证明PerFit的有效性,其证实PerFit是启用许多智能IoT应用程序的有前途的方法。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值