235. 二叉搜索树的最近公共祖先
思路:
碰到root在两个节点值之间时就是最近的公共祖先(二叉搜索树中)
代码:
class Solution {
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
if(root.val > p.val && root.val > q.val) return lowestCommonAncestor(root.left,p,q);
else if(root.val < p.val && root.val < q.val) return lowestCommonAncestor(root.right,p,q);
return root;
}
}
需要注意的点:
1、只需遍历树的一边,当前节点大了向左树搜索,小了向右树搜索,否则就是满足条件,返回当前节点。
701.二叉搜索树中的插入操作
思路:
根据val的值决定插入左树或者右树,直到null。
代码:
class Solution {
public TreeNode insertIntoBST(TreeNode root, int val) {
if(root == null) return new TreeNode(val);
TreeNode cur = root;
TreeNode pre = root;
while(cur != null){
pre = cur;
if(cur.val > val){
cur = cur.left;
}else if(cur.val < val){
cur = cur.right;
}
}
if(pre.val > val){
pre.left = new TreeNode(val);
}else if(pre.val < val){
pre.right = new TreeNode(val);
}
return root;
}
}
需要注意的点:
1、需要指针记录cur在非空的最后一个点,该点即为插入点。
450.删除二叉搜索树中的节点
思路:
根据节点的值决定去左/右子树上进行删除(寻找需要删除节点),根据需要删除节点底下左右孩子的情况分为4种情况(底下全空的情况涵盖在有一个子树为空中),见代码,返回值为该节点的左/右子树。
代码:
class Solution {
public TreeNode deleteNode(TreeNode root, int key) {
if(root == null) return root;
if(root.val == key){//这个点需要删除
if(root.left == null) return root.right;
else if(root.right == null) return root.left;
else{//左右子树皆不为空,需要改变左右子树构造
TreeNode temp = root.right;
while(temp.left != null){
temp = temp.left;
}
temp.left = root.left;//把root左子树移到右子树的最左树
return root.right;
}
}
if(root.val > key) root.left = deleteNode(root.left,key);//看看左树有没有要删除的节点
if(root.val < key) root.right = deleteNode(root.right,key);
return root;
}
}
需要注意的点:
1、注意考虑齐全各种情况。