(一) 从Angular1到Angular2的杂谈

使用了angular1一年下来,完成了若干项目,承蒙此框架的强大带来了不算差的项目编写体验,但1.*版本的angular,确实是有厉害的地方也有其尴尬的地方,包括较多数据的渲染的性能问题,还有就是可能很多人都会觉得ng提供的很多语法很限制。总结就是ng1这个框架,试试水会觉得它厉害到不行,深入了会碰到很多尴尬的问题点,优化起来是一条极漫长的道路(有很多小技巧来提升ng1的性能,这其实不是个好现象,对开发者的经验要求高,除非说用来出面试题啦)。

乃至现在React啦Vue啦风头都盖过了ng,主打框架的轻便与数据渲染的高性能,ng1显得笨重了,但至少国内现在用的企业肯定还不少,至少笔者就贡献了几个。

ng2的发布也有被大家调侃,最主要的一点是从1版本到2版本的变化相当不容易去升级,实在是尴尬,尤其是在写本文的几天前,google给的消息是ng将会3个月一小更,6个月一大更,这么说ng7s plus也不远了。

但是站在某个角度想,版本的更新也算是件好事,先不说ng2之后的半年升一级,从ng1版本到ng2版本的更新绝不是什么坏事,首先2版本在性能上是略快与React的,这个在某国外视频中有人证实,其次是2版本是基于TypeScript开发的,可以完美利用酷炫的ES6与TS语法,进一步讲就是ng2算是谷歌亲儿子,微软干儿子。

当然ng2的强大是有代价的,那就是其门槛相比ng1完全是高到天际,直接原因就是使用了ES6语法,TS语法,模块化编程等一系列Web新特性,还有个尴尬的原因自然是这么多新特性的浏览器与平台兼容性了。

内容概要:本文研究基于SPEA2(Strength Pareto Evolutionary Algorithm 2)的移动机器人路径规划方法,利用该多目标优化算法在复杂环境中寻找最优或近似最优的机器人运动路径。文中详细阐述了SPEA2算法的基本原理及其在路径规划中的具体应用流程,并通过Matlab代码实现仿真验证,展示了算法在避障、路径平滑性和多目标优化方面的有效性。研究结合栅格地图建模,定义了包括路径长度、安全性与能耗在内的多个优化目标,体现了SPEA2在处理多目标冲突问题上的优势。; 适合人群:具备定Matlab编程基础,从事智能优化算法、机器人路径规划或人工智能相关领域的研究生及科研人员;熟悉进化算法并希望将其应用于实际工程问题的技术开发者。; 使用场景及目标:①掌握SPEA2算法在移动机器人路径规划中的建模与实现方法;②学习如何将多目标优化思想融【移动机器人路径规划】基于SPEA2的移动机器人路径规划研究(Matlab代码实现)入路径规划问题;③为后续研究NSGA-II、MOEA/D等其他多目标算法提供对比基准和技术参考; 阅读建议:此资源以Matlab代码为核心支撑,建议读者结合算法原理部分仔细研读代码实现细节,动手运行仿真案例,深入理解适应度函数设计、非支配解集维护及环境建模的关键步骤,从而全面提升对多目标进化算法在机器人应用中的实践能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值