分区、分表、分片

1. 分区

  • 一张表数据分成N个块,在逻辑上看只是一张表,但底层由N个物理区块组成
  • 突破磁盘的读写能力,从而达到提高mysql性能的目的
  • 特点
    • 数据库自身特性
    • 无法跨库,可跨存储设备
    • 数据库自身保证数据完整性,一致性
  • 缺点
    • 分区数限制:1024
    • 不支持外键
  • mysql5开始支持分区
    • mysql表由三个文件组成:.myd数据文件,.myi索引文件,.frm表结构文件
    1.  TABLE `access_log` (
        `id` int(11) NOT NULL AUTO_INCREMENT,
        `access_time` datetime NOT NULL,
        PRIMARY KEY (`id`,`access_time`)
      ) ENGINE=InnoDB DEFAULT CHARSET=utf8
      50100 PARTITION BY RANGE (to_days(access_time))
      (PARTITION p1 VALUES LESS THAN (to_days(20190101)) ENGINE = InnoDB,
       PARTITION p2 VALUES LESS THAN (to_days(20190102)) ENGINE = InnoDB,
       PARTITION p3 VALUES LESS THAN (to_days(20190103)) ENGINE = InnoDB) ;
       
      -- 新增分区
      alter table access_log add partition(
          partition p4 values less than (to_days('20190105'))
      );
      -- 删除分区
      alter table access_log drop partition p1;
      -- 拆分分区
      alter table access_log reorganize partition p4 into(
          -> partition s0 values less than(to_days('20190104')),
          -> partition s1 values less than(to_days('20190105'))
          -> );
      -- 合并分区
      alter table access_log reorganize partition s0,s1 into (
          partition p4 values less than (to_days('20190105'))
      );

 

  • 分区类型
    • Range
      • 连续区间
    • List
      • 枚举值集合
    • Hash
      • 只能针对整数进行Hash
      • 单列
    • Key
      • 多列
  • 常见问题
    • A PRIMARY KEY must include all columns in the table's partitioning function:这样的话判断主键是否唯一就可以在单个分区内部完成,否则就需要跨所有的分区
    • MAXVALUE can only be used in last partition definition:RANGE表分区后不能带MAXVALUE分区,否则无法增加分区。或者就只能重新分区了
  1.  table access_log partition by range(to_days(access_time))(
    partition p1 values less than (to_days('20191202')),
    partition p2 values less than (to_days('20191203')),
        partition po values less than (maxvalue)
    )
    • Table has no partition for value 737425:因为分区的范围没有包含所有可能的记录的值

2. 分表

  • 类型
    • 水平分表
    • 垂直分表
  • 优点
    • 单表并发提高,磁盘I/O性能提高,写效率提高
  • 访问量大,且表数据比较大时,使用分表
  • 缺点
    • 需要业务处理,较复杂
    • sharding-JDBC,MyCat

3. 分片(分库)

  • 场景
    • 单台DB存储空间不足
    • 高并发场景下,当数据库Master无法承载写操作压力时,为提高数据库写入能力
  • 目的
    • 突破单节点数据库服务器的 I/O 能力限制,解决数据库扩展性问题
  • 拆分种类
    • 水平分库
      • 将表数据拆分到不同的数据库中
      • 解决单表数据量增长出现的读写压力
      • 表结构相同
    • 垂直分库
      • 按功能模块拆分
      • 解决表之间的IO竞争
  • 要求
    • 数据分布均匀
    • 负载均衡
    • 数据迁移少

4. 分区与分片区别

  • Scale Out - 横向扩展,添加机器达到很好的扩展性
  • Scale Up - 纵向扩展,添加更多的CPU,存储设备,内存时达到很好扩展性

 

 

分库分表是数据库设计中的一种策略,用于处理大规模数据存储和高并发访问。它主要通过将数据分散到多个物理数据库(库)和/或表中来提高系统的可扩展性和性能。分片技术是实现分库分表的关键手段之一,它通常包括以下几种: 1. **按范围分片**(Range Sharding):根据数据的某个关键字段(如时间戳、ID范围)进行划分,例如用户表可能会按照用户ID的模数进行分片,每个范围对应一个分片。 2. **哈希分片**(Hash Sharding):使用哈希函数对数据的键进行散列计算,然后根据结果决定数据应该存储在哪个分片上。这种方法常用于分布式缓存如Redis中。 3. **标签分片**(Tag-based Sharding):为数据添加额外的标签,然后根据这些标签的组合来决定数据的归属,适合于动态分片场景。 4. **列表分片**(List-based Sharding):对于有序数据,可以基于列表的索引来进行分片,例如Twitter的FlockDB就是基于这种分片方法。 5. **分区分表**(Partitioning):在单个数据库中,通过水平分割数据表成多个部分,比如按日期、ID区间等进行分区。 6. **地理空间分片**(Geospatial Sharding):针对地理位置数据,通过经纬度或其他地理坐标进行分片,适合地图应用。 选择哪种分片方法取决于你的具体业务需求、数据模式以及系统的技术栈。分片策略需要谨慎设计,以确保数据的一致性、查询效率和扩展性。在实施分片时,还需要考虑数据迁移、故障恢复和负载均衡等因素。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值