责任链模式

1.定义

很多的对象由每一个对象对其下家的引用而联结起来形成一条链。请求在这个链上传递,直到链上的某一个对象决定处理此请求。发出这个请求的客户端并不知道链上的哪一个对象最终处理这个请求,这使得系统可以在不影响客户端的情况下动态的重新组织链和分配责任。

2.UML类图

3.角色

抽象处理者:定义出一个请求处理的接口,假如需要,接口可以定义出一个方法,以返回对下家的引用。

具体处理者:处理接受到的请求,可以将请求处理掉或者传递给下就家。

抽象请求者:定义一个抽象的请求者

具体请求者:具体的请求者

4.适用场合

系统中已经有一个由处理者对象组成的链。这个链可能由复合模式给出。第二、当有多于一个的处理者对象会处理一个请求,而且在事先并不知道到底由哪一个处理者对象处理一个请求。这个处理者对象是动态确定的。第三、当系统想发出一个请求给多个处理者对象中的某一个,但是不明显指定是哪一个处理者对象会处理请求。第四、当处理一个请求的处理者对象集合需要动态的指定时。

5.代码

抽象处理者:

package com.designpattern.chain;

/**
 * 抽象处理者
 * 
 * @author wujinsong
 */
public abstract class Handler {
    /**
     * 能处理的级别
     */
    private int level = 1;
    
    /**
     * 下一个处理人是谁
     */
    private Handler nextHandler;
    
    public Handler(int level) {
        this.level = level;
    }
    
    /**
     * 处理请求
     * 
     * @param woman the Woman 妇女对象
     */
    public final void handleMessage(IWoman woman) {
        if (woman.getType() == this.level) {
            this.response(woman);
        }
        else {
            if (this.nextHandler != null) {
                this.nextHandler.handleMessage(woman);
            }
            else {
                System.out.println("不作处理");
            }
        }
        
    }
    
    /**
     * 下一个处理者
     * 
     * @param nextHandler
     */
    public void setNextHandler(Handler nextHandler) {
        this.nextHandler = nextHandler;
    }
    
    /**
     * 应答
     * 
     * @param woman
     */
    public abstract void response(IWoman woman);
    
}


具体处理者:父亲

package com.designpattern.chain;

/**
 * 具体处理者父亲
 * 
 * @author wujinsong
 */
public class Father extends Handler {
    public Father() {
        super(1);
    }
    
    @Override
    public void response(IWoman woman) {
        System.out.println("女儿的要求:" + woman.getRequest());
        System.out.println("父亲的回答:同意");
    }
}


具体处理者:丈夫

package com.designpattern.chain;

/**
 * 具体处理者丈夫
 * 
 * @author wujinsong
 */
public class Husband extends Handler {
    
    public Husband() {
        super(2);
    }
    
    @Override
    public void response(IWoman woman) {
        System.out.println("妻子的要求:" + woman.getRequest());
        System.out.println("丈夫的回答:同意");
    }
}

具体处理者:儿子

package com.designpattern.chain;

/**
 * 具体处理者儿子
 * 
 * @author wujinsong
 */
public class Son extends Handler {
    
    public Son() {
        super(3);
    }
    
    @Override
    public void response(IWoman woman) {
        System.out.println("母亲的要求:" + woman.getRequest());
        System.out.println("儿子的回答:同意");
    }
}


抽象请求者:

package com.designpattern.chain;

/**
 * 抽象请求者
 * 
 * @author wujinsong
 */
public interface IWoman {
    /**
     * 个人情况
     * 
     * @return the int 个人情况
     */
    public int getType();
    
    /**
     * 获取个人请求
     * 
     * @return the String 获取 个人请求
     */
    public String getRequest();
    
}


具体请求者:

package com.designpattern.chain;

/**
 * 具体请求者
 * 
 * @author wujinsong
 */
public class Woman implements IWoman {
    
    /**
     * 个人情况
     * 1---未出嫁
     * 2---出嫁
     * 3---丈夫外出
     */
    private int type = 0;
    
    /**
     * 妇女的请示
     */
    public String request = "";
    
    /**
     * 构造函数
     * 
     * @param type 妇女状态
     * @param request 请求
     */
    public Woman(int type, String request) {
        this.type = type;
        switch (type) {
            case 1:
                this.request = "女儿的请求是:" + request;
                break;
            case 2:
                this.request = "妻子的请求是:" + request;
                break;
            case 3:
                this.request = "母亲的请求是:" + request;
                break;
            
            default:
                break;
        }
    }
    
    public int getType() {
        return type;
    }
    
    public String getRequest() {
        return request;
    }
    
}



深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值