OpenCV4.x图像处理实例-仿微信视频通话背景模糊效果

本文通过OpenCV4.x和Tensorflow2,利用DeepLabV3模型进行人像与背景分离,然后对背景进行模糊和毛玻璃效果处理,最后重新合并,实现类似微信视频通话的背景模糊功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

仿微信视频通话背景模糊效果

新版微信视频通话支持背景模糊功能。本文将演示如何实现该功能效果。

主要步骤如下:

  1. 对视频流进行人像与背景分割
  2. 对分割的背景进行模糊处理
  3. 对已经模糊的背景加上毛玻璃效果
  4. 将人像和已经处理的背景合并

1、视频流进行人像与背景分离

视频帧中的人像与背景分离有非多的方法实现,本实例使用DeepLabV3 图像分割深度学习模型结合Tensorflow 2 和OpenCV实现。

模型下载地址:http://download.tensorflow.org/models/deeplabv3_mnv2_pascal_train_aug_2018_01_29.tar.gz

模型定义与加载:

import os
import tarfile
import numpy as np
from PIL import Image

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

视觉与物联智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值