电路中的复数与相量(Phasor)
文章目录
- 电路中的复数与相量(Phasor)
-
- 1、概述
- 2、复数定义
- 3、复数计算规则
- 4、电子领域的复数
- 5、总结
复数是一种重要的数学工具,广泛应用于包括电子学在内的许多物理领域。 这个概念可能看起来很奇怪,但它们的操作很简单,而且效率很高。
在第一部分中,介绍了有关复数的一般概念,以便熟悉它们的表示形式。 接下来的第二部分将列举一些与复数相关的最重要的定义。 在定义了一些关键概念之后,第三部分将更详细地讨论它们的计算规则。 最后,我们将了解为什么它们被用于电子领域并作为一种有效的工具简化计算。
1、概述
本节从纯数学的角度介绍复数及其关联的集合。 复数集记为 C \mathbb{C} C,它是我们熟悉的通常实数集的扩展。 因此,实数包含在复数中。
定义复数的起点是虚数单位 i i i,在电子学中也记为 j j j,以避免与电流混淆。 这个数字的定义如 j 2 = − 1 j^2=-1 j2=−1,在一些国家或机构中,也可能遇到 j = − 1 j=\sqrt-1 j=−1的表示法。
实数可以在沿直线的一维空间中表示,而复数可以在称为复平面的二维空间中表示。 该结构如下图1所示:
我们先来谈谈复平面,它由两个轴组成,可以表示任何复数。 横轴是实数集,纵轴是虚轴。
如图1所示,复数 z z z 可以用表示坐标的两个实数 a a a 和 b b b 来描述,也可以用距离 ∣ z ∣ |z| ∣z∣ 来描述。 和角度 θ \theta θ。 描述 z z z 的第一个选项称为代数形式,在以下公式1中定义:
强调一些特殊案例很有趣。 如果 b = 0 b=0 b=0, z = a z=a z=a,表示复数化简为实数。 若 a = 0 a=0 a=0, z = j b z=jb z=jb,则 z z z称为纯虚数。
定义 z z z的第二种方法称为极坐标或指数形式。 在给出这种形式的表达式之前,我们需要了解 ∣ z ∣ |z| ∣z∣由什么组成。 和 θ \theta θ。 值 ∣ z ∣ |z| ∣z∣,也称为模,是复平面原点与复数之间的距离。 它由毕达哥拉斯定理定义,如公式2所示:
θ \theta θ称为参数,定义实轴和复数之间的角度。 除非 a = 0 a=0 a=0 且 b = 0 b=0 b=0 或 a < 0 a<0 a<0 且 b = 0 b=0 b=0,否则始终可以使用以下公式计算参数:
使用欧拉公式,复数 z z z的极坐标描述由距离和角度给出,并满足以下公式:
2、复数定义
许多定义都与复数相关。
复杂代数中经常使用两个简单的运算符:Re 和 Im。 假设一个复数 z = a + j b z=a+jb z=a+jb,实部运算符Re 定义为 R e ( z ) = a Re(z)=a Re(z)=a,虚部运算符定义为 I m ( z ) = b Im(z)=b Im(z)=b。 另一种更简单的确定复数参数 θ \theta θ的方法(条件是 R e ( z ) > 0 Re(z)>0 Re(z)>0)由下式给出: θ = arctan ( I m ( z ) / R e ( z ) ) θ=\arctan(Im(z)/Re(z)) θ=arctan(Im(z)/Re(z))。
复共轭是另一个重要的定义,广泛应用于复代数中。 复数 z z z的复共轭记为 z ∗ z^*