RC充电电路
当电压源施加到 RC 电路时,电容器 C C C 通过电阻 R R R 充电。
1、概述
电容器的充电不是即时的,因为电容器具有取决于时间的 i − v i-v i−v 特性,如果电路同时包含电阻器 ( R R R) 和电容器 ( C C C),它将形成 RC 充电电路,其特性随时间呈指数变化。
当向所有电气或电子电路或系统施加连续(DC)或交流(AC)信号或电压时,其输入和输出端子之间都会遭受某种形式的“时间延迟”。
这种延迟通常称为电路时间延迟或时间常数,它表示施加输入阶跃电压或信号时电路的时间响应。 任何电子电路或系统的最终时间常数将主要取决于与其连接的电容性或电感性电抗组件。 时间常数的单位为 Tau – τ \tau τ
当不断增加的直流电压施加到已放电的电容器时,电容器会吸收所谓的“充电电流”并“充电”。 当该电压降低时,电容器开始沿相反方向放电。 由于电容器可以存储电能,因此它们的作用有很多,就像小型电池一样,根据需要存储或释放其板上的能量。
电容器极板上存储的电荷如下: Q = C V Q = CV Q=CV。 电容器能量的充电(存储)和放电(释放)从来都不是即时的,而是需要一定的时间才能发生,电容器充电或放电到其最大供电值的一定百分比内所需的时间称为 它的时间常数( τ \tau τ)。
如果电阻与电容串联形成RC电路,电容将通过电阻逐渐充电,直到其两端电压达到电源电压。 电容器充满电所需的时间大约相当于5个时间常数或5T。 因此,串联 RC 电路的瞬态响应相当于 5 个时间常数。
该瞬态响应时间 T 以 τ = R × C \tau = R \times C τ=R×C(以秒为单位)来测量,其中 R 是以欧姆为单位的电阻值,C 是以法拉为单位的电容器值。 这构成了 RC 充电电路的基础,5T 也可以被认为是“ 5 × R C 5 \times RC 5×RC”。
2、RC充电电路
下图显示了一个电容器 ( C C C) 与一个电阻器 ( R R R) 串联,形成一个 RC 充电电路,通过机械开关连接在直流电池电源 ( V s V_s Vs) 上。 在零时间,当开关第一次闭合时,电容器逐渐通过电阻器充电,直到其两端的电压达到电池的供电电压。 电容器充电的方式如下所示。
上面我们假设电容器 C C C 完全“放电”并且开关 ( S S S) 完全打开。 这些是电路的初始条件,然后 t = 0 t = 0 t=0、 i = 0 i = 0 i=0 和 q = 0 q = 0 q=0。当开关闭合时,时间从 t = 0 t = 0 t=0 开始,电流开始通过电阻器流入电容器。
由于电容器两端的初始电压为零( V c = 0 V_c = 0 Vc=0