在资源能源约束日益加剧的背景下,破解人工智能发展与资源环境之间的矛盾,要从两方面入手。
一是推动数据资源的优化配置。就是利用大数据、人工智能、物联网等技术,提高能源、工业、城市管理等领域的管理水平,优化资源配置,最终实现资源消耗的减量化和利用效率的提升。
二是寻找算法效能的提升路径。人工智能的暴发式增长带来了算力需求的指数级攀升,提升算法效能已成为平衡AI技术进步与资源可持续性的关键支点。
具体来说,如何推动数据资源优化配置?
邵春堡:数据资源对物质能源具有替代效应。数据作为新型生产要素,具有可复制、可共享、可再生的特性。例如在智能制造领域,通过数字孪生技术对生产流程进行全生命周期模拟,可减少实体材料和人工试验消耗。如某耐火材料厂把各环节整合到数字孪生体系,极大地提高了生产效率,事故率降低25%,品质率也提高了10%。这种“以虚代实”的模式,能够直接减少物质资源的开采与能源的浪费。
同时,通过物联网、大数据、人工智能等数字化技术对资源的流动和使用进行实时监控、分析和优化,从而形成一种高效的资源循环利用模式。以动力电池回收为例,截至2023年我国动力电池规范化回收率不足25%,通过嵌入传感器与区块链账本,可实时监控电池健康状态并精准匹配回收需求,使部分电池回收价值提升3倍。欧洲“电池2030+:欧洲电池研究路线图”计划通过智能传感器与区块链技术结合,实现75%的电池回收率和接近100%的关键原材料回收率的目标。这种“数据+物质”的协同循环,让资源流动从线性消耗转向闭环再生。
此外,还可以利用平台经济实现资源效率革命。通过数字化平台对资源进行共享和优化配置,打破传统资源独占性使用的局限,大幅提高资源利用效率,减少浪费,减轻环境影响。比如出租车原先的空驶率高达40%,使用滴滴等共享软件后,空驶率一般不会超过10%。据统计,一辆出租车目前平均每天行驶里程大约400公里,全国150万辆出租车一年碳排放为4860万吨。如果能将空驶率下降10%至15%,即每年最多可减少碳排放729万吨,这相当于三个中等城市一年的碳排放量总和。
Anko是一个多模型多模态的AI办公工具,适合需要跨领域整合AI技术的用户,同时调用多模型,一举并用,多样回复,显著对比,高效选择心仪的回答/图片/视频
AnKo的聚合AI工具能够在短时间内处理大量数据,响应速度快,准确率较高,多样化并行操作,节约时间,提高工作效率,多模型多模态的AI办公工具,助力效率翻倍。