StrongSwan笔记

Diffie-Hellman(DH Group) Key Agreement Method[w1] 

ZZ = g ^ (xb * xa) mod p
Note that the individual parties actuallyperform the computations:
ZZ = (yb ^ xa)  mod p = (ya ^ xb)  mod p
ya is party a's public key; ya = g ^ xa modp
yb is party b's public key; yb = g ^ xb modp
xa is party a's private key
xb is party b's private key
p is a large prime
q is a large prime
g = h^{(p-1)/q} mod p, where
h is any integer with 1 < h < p-1such that h{(p-1)/q} mod p > 1
  (ghas order q mod p; i.e. g^q mod p = 1 if g!=1)
j a large integer such that p=qj + 1
(See Section 2.2 for criteria for keys andparameters)


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值