约瑟夫环问题

n 个人标号 。逆时针站一圈,从 号开始,每一次从当前的人逆时针数 个,然后让这个人出局。问最后剩下的人是谁?

分析:以n=4,k=2为例。

内层删除1后,只剩3个元素,如上图最外层,编号从0开始,如果最外层最后剩下的是0,在原来中对应的是2,满足J(n,k)=(J(n-1,k) + k) mod n的递推关系

设J(n,k)表示n,k时约瑟夫环问题的答案。有如下递归式

J(n,k)=(J(n-1,k) + k) mod n

int josephus(int n, int k)
{
    int res = 0;
    for (int i = 1; i <= n; ++i)
    {
    	res = (res + k) % i;
    }
    	
    return res;
}

时间复杂度为O(n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kgduu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值