约瑟夫问题是一个经典的问题,我们不妨将这个经典问题进行扩展,变成一个双向的约瑟夫问题。
已知 n 个人(不妨分别以编号 1,2,3,...,n 代表 )围坐在一张圆桌周围,首先从编号为 k 的人从 1 开始顺时针报数,1, 2, 3, ...,记下顺时针数到 m 的那个人,同时从编号为 k 的人开始逆时针报数,1, 2, 3, ...,数到 m 后,两个人同时出列。然后从出列的下一个人又从 1 开始继续进行双向报数,数到 m 的那两个人同时出列,...;。依此重复下去,直到圆桌周围的人全部出列。直到圆桌周围只剩一个人为止。
如果双向报数报到 m 时落在同一个人身上,那本次出列的只有一个人。
例如:5,1,2。则总共5个人,从1开始顺时针报数,数到2,定位编号2;同时从1开始报数数到2,定位编号5;2和5同时出列。然后继续开始报数,顺时针报数3,4,定位到4;逆时针报数4,3,定位3;4和3同时出列。最后剩余的为编号1。输出为:2-5,4-3,1,。
如果输入:6,2,3。则输出:4-6,2,1-3,5,。其中第2次只输出一个2,表示第二次双向报数时,恰好都落在编号2上,所以只有一个编号出列。
输入:
n,k,m
输出:
按照出列的顺序依次输出编号。同时出列编号中间用减号"-”连接。
非法输入的对应输出如下
a)
输入:n、k、m任一个为0
输出:n,m,k must bigger than 0.
b)
输入:k>n
输出:k should not bigger than n.
测试输入
1,0,0
1,2,1
5,1,2
测试输出
n,m,k must bigger than 0.k should not bigger than n.2-5,4-3,1,源代码#include<stdio.h> #include<malloc.h> #include<stdlib.h> typedef int ElemType; int n,m,k; //定义一个全局变量 typedef struct DuLNode //双向循环链表结构 { ElemType data; struct DuLNode *prior; struct DuLNode *next; }DuLNode,*DuLinkList; void Create(DuLinkList &H) //创建带头结点的双向循环链表 { DuLinkList p,q; int i; H=(DuLinkList)malloc(sizeof(DuLNode)); p=H; q=H; for(i=1;i<=n;i++) { p=(DuLinkList)malloc(sizeof(DuLNode)); p->data=i; p->prior=q; q->next=p; q=p; } p->next=H; H->prior=p; } void Delete(DuLinkList &P) //删除结点 { P->prior->next=P->next; P->next->prior=P->prior; } int main() { int i; DuLinkList H,l,R,right,left; //分别用以表示头结点,l和R都用于找k的值,向右(顺时针),向左(逆时针) scanf("%d,%d,%d",&n,&k,&m); if(!n||!k||!m) { printf("n,m,k must bigger than 0.\n"); return 0; } if(k>n) { printf("k should not bigger than n.\n"); return 0; } Create(H); R=H->next ; while(R->data!=k) { R=R->next; } l=R; while(n) { right=R; left=l; for(i=1;i<m;i++) { right=right->next; left=left->prior; //遇见头结点需要特殊处理 if(right==H) right=right->next; if(left==H) left=left->prior; } R=right->next; l=left->prior; if(R==H) R=R->next; if(l==H) l=l->prior; if(right!=left) { n=n-2; printf("%d-%d,",right->data,left->data); Delete(right); Delete(left); } else { n=n-1; printf("%d,",right->data); Delete(right); } } printf("\n"); }