- 博客(21)
- 收藏
- 关注
原创 建筑物表面缺陷检测与识别:基于YOLO11-C3k2-Strip模型的智能检测系统
本文提出了一种基于改进YOLO11-C3k2-Strip模型的建筑物表面缺陷智能检测系统。针对建筑物表面常见的裂缝、剥落、锈蚀等缺陷,通过引入C3k2模块增强特征提取能力,结合Strip模块优化细长形缺陷检测。系统采用12000张图像构建多类别数据集,通过专门的数据增强策略提升模型泛化性。实验结果表明,该系统mAP达92.3%,裂缝检测精度达94.7%,在商业建筑、历史建筑和桥梁等实际场景中表现优异。系统支持无人机图像等多种输入源,可实现15FPS实时检测,为建筑维护提供高效可靠的智能解决方案。
2025-12-21 17:22:55
903
原创 【目标检测】基于改进YOLOv13-C3k2-DWR的铲斗定位系统研究
本文提出了一种改进的YOLOv13-C3k2-DWR铲斗定位系统,通过优化网络结构和特征提取策略提升检测性能。研究设计了C3k2模块增强特征提取能力,引入DWR注意力机制动态调整通道和空间注意力权重。实验表明,改进模型在mAP@0.5达到85.7%,相比原始YOLOv13提升7.4个百分点,同时保持较好的实时性(42FPS)。系统在复杂工况下表现出色,定位精度满足工程需求,为智能挖掘作业提供了有效的技术方案。
2025-12-21 16:34:35
1024
原创 芦茎计数与尺寸检测:基于RetinaNet_x101的智能识别系统
本文提出了一种基于RetinaNet_x101深度学习的芦茎智能检测系统,用于解决传统人工检测效率低、精度差的问题。该系统通过优化模型架构、采用多尺度训练策略和Focal Loss函数,实现了对复杂背景下芦茎的高精度识别与尺寸测量。实验结果表明,该系统在测试集上达到92.3%的mAP,尺寸测量误差仅1.2mm,推理速度达74FPS,显著提升了芦笋生产的自动化水平。该系统可广泛应用于芦笋生长监测、采收指导和品质分级,为智慧农业提供了有效的技术解决方案。
2025-12-18 11:04:07
619
原创 军用装备视觉识别与分类_yolov10n-PST模型详解
本文系统梳理了YOLO系列目标检测模型的演进历程与核心技术突破。从YOLOv3的多尺度检测头、YOLOv5的Mosaic数据增强,到YOLOv8的CSP结构和Anchor-Free设计,再到YOLOv11的轻量化与知识蒸馏技术,每个版本都针对性地解决了目标检测中的关键问题。特别介绍了针对军用装备优化的YOLOv10n-PST模型,其Pyramid Spatial-Temporal注意力机制有效应对了军事场景中的复杂背景、目标多样性和实时性需求。文章还提供了模型选型建议和训练技巧,并展望了轻量化、多任务学习等
2025-12-18 10:19:47
819
原创 【YOLOv13】球类物体颜色与线条识别——C3k2-FMB模型改进
本文介绍了基于改进YOLOv13的球类物体颜色与线条识别系统。通过引入C3k2-FMB模块增强特征提取能力,结合多任务学习策略,实现了球类检测、颜色分类和线条识别的三合一功能。实验表明,改进后的模型在mAP@0.5指标上达到0.853,相比基础YOLOv13提升18%,颜色分类准确率超92%,线条检测mAP达0.94。该系统可应用于体育赛事分析和智能监控等领域,为运动数据统计和场地管理提供技术支持。
2025-12-15 13:37:57
737
原创 球类运动场景中的多目标检测与追踪_基于yolo13-C3k2-HDRAB模型实现
本文提出了一种基于改进YOLOv13模型的球类运动多目标检测与追踪方法。针对球类运动场景中目标快速移动、形状变化和光照复杂等挑战,设计了YOLOv13-C3k2-HDRAB模型,通过引入C3k2特征增强模块和HDRAB层次化注意力机制,显著提升了小目标和快速运动目标的检测精度。实验表明,该模型在自建SportsBall数据集上达到0.902的mAP@0.5,小目标AP提升7.3%至0.789。结合改进的DeepSORT追踪算法,系统在体育赛事分析等实际应用中表现优异,MOTA达82.3%。研究为复杂运动场景
2025-12-15 13:04:15
655
原创 YOLOv10n+全局边缘信息传输|多肉植物智能识别与分类系统_1
本文介绍了一种基于YOLOv10n模型和全局边缘信息传输技术的多肉植物智能识别系统。该系统通过构建包含2000+张30多种多肉植物图像的数据集,采用Mosaic数据增强、迁移学习和两阶段训练策略,优化了特征金字塔网络并引入注意力机制。改进后的模型在测试集上达到92.3% mAP,推理速度提升2.3倍,可在树莓派4B上以25FPS运行。系统已部署为移动应用,支持拍照和图库识别,为植物爱好者提供便捷服务。未来将扩展数据集、优化模型结构并增强功能,如生长状态监测和病虫害检测。该项目展示了深度学习在植物识别领域的应
2025-12-12 15:01:03
894
原创 基于YOLO11-seg与RFCAConv的PCB缺陷检测分类系统实现与优化_1
本文提出了一种基于YOLO11-seg与RFCAConv的PCB缺陷检测分类系统。针对PCB制造中常见的表面缺陷、尺寸缺陷、元器件缺陷和焊接缺陷等问题,传统检测方法存在效率低、漏检率高等不足。该系统通过引入RFCAConv模块优化YOLO11-seg模型,结合多尺度特征融合和注意力机制,显著提升了缺陷检测精度。实验结果表明,该系统能够实时、准确地识别PCB各类缺陷,满足工业检测需求。研究为PCB质量检测提供了高效的深度学习解决方案,具有重要的工程应用价值。
2025-12-12 14:29:24
836
原创 YOLOv10n-CA-HSFPN_基于改进YOLOv10n的太阳能电池板污渍检测系统
1.3.4. 改进的检测头 针对太阳能电池板污渍检测中小目标多、形状不规则的特点,我们对YOLOv10n的检测头进行了专门优化。改进后的v10Detect检测头包含以下关键改进: 小目标增强模块:通过高分辨率特征保留和上下文信息聚合,提升对小污渍的检测能力 多尺度分类器:采用分级分类策略,先粗分类后细分类,提高分类精度 动态正负样本分配:根据污渍特征自适应调整正负样本比例 实验结果表明,改进后的检测头使小目标污渍的检测召回率提升了7.3%,同时保持了较高的检测速度。 1.4. 实验与分析 1.4.1. 数据
2025-12-07 19:11:53
754
原创 基于改进lad_r101-paa-r50_fpn网络的斯诺克球类识别与定位系统
本文提出了一种基于改进lad_r101-paa-r50_fpn网络的斯诺克球类识别与定位系统。系统通过优化特征增强模块、多尺度融合和损失函数,显著提升了识别准确率。构建了包含10000张图像的数据集,采用数据增强策略解决样本不均衡问题。实验表明,系统在测试集上达到92.5%的mAP,定位误差小于2像素,处理速度满足实时性要求。该系统已成功应用于斯诺克教学和比赛分析,未来可通过模型轻量化和3D重建进一步优化。
2025-12-07 18:31:48
780
原创 【深度学习应用】基于RetinaNet的电源开关与旋钮状态识别技术研究_1
RetinaNet是由Facebook AI研究院在2017年提出的高精度目标检测模型,它在保持检测速度的同时,显著提升了小目标检测的性能。🎯 该模型主要解决了单阶段目标检测器中存在的正负样本不平衡问题,通过引入Focal Loss损失函数,有效提升了模型对难例样本的学习能力。特征金字塔网络(FPN):通过自顶向下路径和横向连接,构建多尺度特征金字塔,解决目标尺度变化问题。锚框(Anchor)机制:设计了不同尺寸和宽高比的锚框,以适应不同形状的目标。Focal Loss损失函数。
2025-12-04 08:23:10
814
原创 发电设备组件检测与识别_SABL-RetinaNet_R50-GN_FPN_1x_COCO模型实战指南
本文详细介绍了SABL-RetinaNet_R50-GN_FPN_1x_COCO模型在发电设备组件检测与识别中的应用。通过将SABL与RetinaNet结合,我们实现了对发电设备组件的高精度检测,实际应用效果良好。这个模型就像是一个"超级助手",能够帮助运维人员快速准确地发现设备异常,预防故障发生。随着技术的不断发展,相信这个模型在工业检测领域将发挥越来越重要的作用!🌟希望本文能够对大家有所帮助,欢迎在评论区分享你的想法和经验!点击查看项目详情。让我们一起探索工业检测的无限可能吧!🚀。
2025-12-03 19:20:17
798
原创 【集成电路芯片识别】基于YOLO11-C3k2-MambaOut的XG标记检测算法实现与优化
本文提出了一种基于YOLO11-C3k2-MambaOut的集成电路芯片标记检测算法。针对芯片标记微小目标检测的挑战,该算法创新性地结合了C3k2模块的多尺度特征融合能力和Mamba的序列建模能力。通过构建包含5000张芯片图像的专业数据集,并采用优化的训练策略(包括改进的损失函数和余弦退火学习率调度),算法在保持高效推理的同时显著提升了检测精度。实验结果表明,该方法在mAP等关键指标上优于主流YOLO系列算法,适用于电子制造领域的质量控制和自动化检测任务。通过模型剪枝和量化处理,进一步优化了算法在资源受限
2025-12-01 17:00:12
917
原创 车站客流监控中的人体检测与入侵识别_VFNet改进版
本文提出了一种基于改进VFNet的车站人体检测与入侵识别系统。针对车站监控场景中多尺度人体检测和遮挡问题,对原始VFNet进行了三项改进:融合多尺度特征增强模块提升小目标检测能力,轻量化注意力机制减少计算量,遮挡感知模块提高密集人群下的检测精度。系统采用分层架构设计,包含人体检测和入侵识别模块,支持站台边缘入侵等工作场景识别。实验在Station-500和自建数据集上进行,评估指标包括mAP、FPS和F1分数。该系统能够有效解决车站监控中的人体检测难题,为智能安防提供技术支持。
2025-12-01 16:27:53
754
原创 基于VFNet的汽车车身部件目标检测详解:X101-32x4d_FPN_MS-2x_COCO模型实战
本文详细介绍了基于VFNet的汽车车身部件目标检测方法,重点解析了X101-32x4d_FPN_MS-2x_COCO模型架构及其优势。文章首先阐述了VFNet网络通过改进损失函数设计,有效解决密集目标检测难题;随后深入讲解模型配置、数据集准备和环境搭建流程,并提供了完整的训练配置文件示例。该方案利用特征金字塔网络实现多尺度特征融合,结合数据增强策略,显著提升了汽车小部件检测的准确性,为工业场景下的精细目标检测提供了实用解决方案。
2025-11-28 14:25:12
799
原创 YOLOv11-SPDConv_铁路轨道目标检测新突破
本文提出了一种基于YOLOv11-SPDConv的铁路轨道目标检测模型,通过引入SPDConv模块实现了多尺度特征融合与高效计算。实验表明,该模型在铁路轨道数据集上mAP@0.5提升3.2%,mAP@0.5:0.95提升2.8%,同时保持较高FPS。模型已成功应用于铁路安全监测系统,检测轨道异物、设备异常等安全隐患,使事故率下降40%,巡检工作量减少60%。研究还提出了数据增强、模型轻量化部署等优化建议,为智能铁路系统提供了高效可靠的技术方案。
2025-11-23 21:15:08
27
原创 辐射计设备识别与分类_YOLO11_EIEStem算法详解
本文介绍了一种基于YOLO11和EIEStem框架的辐射计设备智能识别方法。该方法采用282张高质量标注图像构建数据集,包含Amora等4种设备组件。YOLO11算法通过CSPDarknet、PANet等结构实现高效目标检测,结合EIEStem框架的轻量化优化,显著提升边缘设备推理效率。文章详细阐述了数据预处理、模型训练策略(包括损失函数优化和评估指标)、以及模型量化部署流程。实验结果表明,该方法在辐射计设备识别任务中实现了高精度实时检测,为环境监测等应用提供了有效的自动化解决方案。
2025-11-23 20:38:07
48
原创 基于yolo11-C3k2-PFDConv的危险驾驶行为识别与疲劳状态监测系统
通过本次实战,我们成功训练了一个能识别4类危险驾驶行为的YOLOv8模型。虽然当前mAP只有0.014,但通过持续优化数据集和模型架构,完全可以达到工业级应用标准。🌟关键成功要素高质量标注数据(占成功因素的60%)合理的超参数调优(占30%)充分的训练时长(占10%)想要获取完整的项目源码和训练脚本?点击这里查看: 包含详细的配置文件和推理代码!记住,AI模型的训练就像学开车,需要耐心积累和不断试错。🚀 现在就开始你的危险驾驶行为识别项目吧,用技术守护道路交通安全!
2025-11-21 20:28:17
666
原创 导弹目标检测与识别_TOOD算法改进_R101-DConv-C3-C5_FPN-MS-2x_COCO模型解析
本文详细介绍了基于TOOD算法改进的导弹目标检测模型R101-DConv-C3-C5_FPN-MS-2x_COCO。通过引入可变形卷积、多尺度特征融合和动态任务权重调整等创新技术,模型在COCO数据集上取得了优异的性能,特别适合军事应用场景中的导弹目标检测任务。更多数据集训练:在专门的导弹目标检测数据集上进一步训练和优化模型3D目标检测:扩展模型以处理导弹的三维信息多模态融合:结合雷达、红外等多源信息提高检测可靠性在线学习:使模型能够适应不断变化的战场环境。
2025-11-21 19:54:45
45
原创 YOLOv8-LDConv在传送带齿轮缺陷检测中的应用与实现
本文介绍了YOLOv8-LDConv模型在传送带齿轮缺陷检测中的应用。通过构建包含多种缺陷类型的工业数据集,并采用数据增强策略提高模型泛化能力。模型采用轻量级LDConv技术优化结构,在保持精度的同时降低计算复杂度。训练过程采用AdamW优化器和余弦退火学习率策略,改进的损失函数设计提高了小目标检测性能。实验表明,该方法能有效识别齿轮裂纹、磨损等缺陷,适用于工业实时检测场景。
2025-11-19 17:23:41
423
原创 户外垃圾桶检测与识别:基于YOLOv10n-ReCalibrationFPN-P345模型的智能识别系统
本文提出了一种基于YOLOv10n-ReCalibrationFPN-P345模型的户外垃圾桶智能检测系统。该模型通过轻量化骨干网络、动态特征重校准机制和多尺度预测策略,在复杂环境下实现了高效检测(mAP 38.5%,259 FPS)。实验表明,模型在多种边缘设备上均能稳定运行,为城市环境智能化管理提供了可行的技术方案,但在极端天气和严重遮挡场景下仍有改进空间。
2025-11-19 16:43:25
638
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅