数据结构PAT习题:02-线性结构4 Pop Sequence

02-线性结构4 Pop Sequence

Given a stack which can keep M numbers at most. Push N numbers in the order of 1, 2, 3, …, N and pop randomly. You are supposed to tell if a given sequence of numbers is a possible pop sequence of the stack. For example, if M is 5 and N is 7, we can obtain 1, 2, 3, 4, 5, 6, 7 from the stack, but not 3, 2, 1, 7, 5, 6, 4.

Input Specification:
Each input file contains one test case. For each case, the first line contains 3 numbers (all no more than 1000): M (the maximum capacity of the stack), N (the length of push sequence), and K (the number of pop sequences to be checked). Then K lines follow, each contains a pop sequence of N numbers. All the numbers in a line are separated by a space.

Output Specification:
For each pop sequence, print in one line “YES” if it is indeed a possible pop sequence of the stack, or “NO” if not.

Sample Input:

5 7 5
1 2 3 4 5 6 7
3 2 1 7 5 6 4
7 6 5 4 3 2 1
5 6 4 3 7 2 1
1 7 6 5 4 3 2

Sample Output:

YES
NO
NO
YES
NO

这道题刚开始没有思路,借鉴了网上其他人的想法:
以判断序列 3 2 1 7 5 6 4是否可能为例
先假设这个序列可能,模拟这个序列生成过程,如果生成过程与题目条件一致,则序列存在,否则不存在。
首先我想要3!一看堆栈里面啥都没有,只能往里面放,第一次只能放1,发现1不等于3,那就再往里面放2,还不等于,那就放3,哎,等于啦!把3拿出来,再看我们假设成立的序列,该2了,我们一看栈顶是2,把2拿出来,同理,把1拿出来,这时候我们需要7了,栈里面没东西了,继续往里面加,加4,不行,加5,不行,加6,不行,加7,哎可以啦,把7拿出来,然后下一个需要的是5,发现栈顶是6,不一样,继续往栈里面放,发现没东西放了,而我们现在只能拿6,达不到我们假设序列的要求,所以我们假设的序列是失败的!
综上分析:我们相当于是对假设序列的每个元素逐一分析,同时模拟入栈过程,判断每个元素是否能被堆栈返回有一个不能返回,则失败。

原文链接:https://blog.csdn.net/solitarycccc/article/details/102874048

结合上述思路编写C语言代码如下:

#include <stdio.h>
#include <stdlib.h>
struct Sta   //堆栈
{
 int *data;
 int top;
 int maxsize;
};
typedef struct Sta * Stack;
void push(int n, Stack S);
int pop(Stack S);
int main()
{
 int m, n, kl; //m是堆栈容量,n是数字,kl是输入行数
 scanf("%d %d %d", &m, &n, &kl);
 int i, j, k = 1;
 int a[1000];
 //创建堆栈
 Stack S;
 S = (Stack)malloc(sizeof(struct Sta));  
 S->maxsize = m;
 S->data = (int *)malloc(m * sizeof(int));
 int yes[1000]; //记录各行输入是否可能,如果可能为1,不可能为0。初始化均为1。
 for (i = 0; i < kl; i++)
 {
  yes[i] = 1;
 }
 for (i = 0; i < kl; i++) //行循环
 {
  for (j = 0; j < n; j++)
  {
   scanf("%d", &a[j]);
  }
  k = 1;
  S->top = -1; //堆栈起始为空
  for (j = 0; j < n; j++) //每一行内部循环,判断该行是否可能
  {
   if (S->top == -1) //当堆栈为空时,就向堆栈内压入数字,直至压入a[j]
   {
    for (; k <= a[j]; k++) //之前使用过的数字不再使用,所以k的值在变化
    {
     push(k, S);
     if (S->top > S->maxsize - 1)
     {
      yes[i] = 0;
      break;
     }
    }
    k--;
    pop(S);//将a[j]弹出
   }
   //堆栈不空
   else {
    if (S->data[S->top] == a[j]) { pop(S); } //判断栈顶数字是否等于a[j]
    else
    {
     if (k < n) //判断数字是否被用尽,是否有剩余数字可压入堆栈
     {
      if (S->top == S->maxsize - 1) { yes[i] = 0; } //堆栈满了,无法再压入数字
      else {
       while (S->top < S->maxsize - 1)
       {
        push(++k, S);
        if (S->data[S->top] == a[j]) { pop(S); break; }//压入数字直到数字与a[j]相同
       }
       if (S->top == S->maxsize - 1) { yes[i] = 0; }//在压入数字与a[j]相同之前堆栈已满
      }
     }
     else { yes[i] = 0; }
    }
   }
   if (yes == 0) { break; }
  }
 }
 for (i = 0; i < kl; i++)
 {
  if (yes[i] == 0) { printf("NO\n"); }
  else { printf("YES\n"); }
 }
 return 0;
}
void push(int n, Stack S)
{
 S->top++;
 S->data[S->top] = n;
}
int pop(Stack S)
{
 return S->data[S->top--];
}

代码可行,就是过程稍微有点麻烦,整体逻辑也有点混乱。。。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值