ResNeXt

ResNext: Aggregated Residual Transformations for Deep Neural Networks

简介

可以认为是ResNet的升级版。原理非常简单,一张图即可搞明白:

building block

这种思想可以有三种实现形式:

三种形式

作者实验发现,三种形式效果差不多,考虑计算性能,选择第三种。

作者提出一个概念:把上述building block中除了short-cut以外的支路数量称为cardinality(基数)。作者把cardinality和depth、width两个概念并列,并在实验中证明增加cardinality比增加depth或width更加有效。

对比实验

在FLOP同样增加到2倍的情况下,增加cardinality的方法获得了最好的结果(top5:5.3%)。而且即使在FLOP只有1/2的情况下,ResNeXt也比ResNet效果好。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值