深度学习 激活函数

什么是激活函数

这里写图片描述

如上图,在神经元中,输入的inputs 通过加权,求和后,还被作用了一个函数,这个函数就是激活函数(Activation Function).

为什么需要激活函数

这里写图片描述

激活函数通常有如下一些性质:

  • 非线性: 当激活函数是线性的时候,一个两层的神经网络就可以逼近基本上所有的函数了.但是,如果激活函数是恒等激活函数的时候( f ( x ) = x f(x)=x f(x)=x)就不满足这个性质了,而且如果MLP使用的是恒等激活函数,那么其实整个网络跟单层神经网络是等价的.
  • 可微性:当优化方法是基于梯度的时候,这个性质是必须的.
  • 单调性:当激活函数是单调的时候,单层网络能够保证是凸函数.
  • f ( x ) ≈ x f(x) \approx x f(x)x:当激活函数满足这个性质的时候,如果参数的初始化是random的很小的值,那么神经网络的训练将会很高效;如果不满足这个性质,那么就需要很用心的去设置初始值。
  • 输出值的范围:当激活函数输出值是有限的时候,基于梯度的优化方法会更加 稳定,因为特征的表示受有限权值的影响更显著;当激活函数的输出是无限 的时候,模型的训练会更加高效,不过在这种情况小,一般需要更小的learning rate.

这些性质,也正是我们使用激活函数的原因!

常见的激活函数

sigmoid函数

  • 公式: σ ( x ) = 1 1 + e − x \sigma (x) = \dfrac{1}{1+e^{-x}} σ(x)=1+ex1.
  • 梯度: σ ′ ( x ) = σ ( x ) ( 1 − σ ( x ) ) {\sigma }'(x) =\sigma (x)(1-\sigma (x)) σ(x)=σ(x)(1σ(x)).
  • 梯度消失: 当使用深度网络或者RNN时,由反向传播的理论,会出现多个梯度的连乘,而多个接近于0的数连成会快速逼近0,造成梯度消失,使得几乎没有信号通过神经元传到权重再到数据了.
  • 缺点:
    • 梯度消失;
    • 如果初始化的矩阵随机得不好,权重过大,那么饱和会快速出现,模型基本学不到什么东西;
    • 激活函数计算量大;
    • 激活函数不是关于原点中心对称的,进而影响梯度下降的运作.

relu函数

  • 公式: σ ( x ) = { x , x ≥ 0 0 , x < 0 \sigma (x) = \left\{\begin{matrix}x,x\geq 0\\ 0,x <0\end{matrix}\right. σ(x)={x,x00,x<0.
  • 梯度: σ ′ ( x ) = { 1 , x ≥ 0 0 , x < 0 {\sigma }'(x) =\left\{\begin{matrix}1,x\geq 0\\ 0,x <0\end{matrix}\right. σ(x)={1,x00,x<0.
  • 优点:
    • 避免了梯度消失;
    • 保证了神经网络的稀疏性,可以避免过拟合;
    • 计算简单.
  • 缺点:
    • 当然 ReLU 也有缺点,就是训练的时候很”脆弱”,当一个非常大的梯度流过一个 ReLU 神经元,更新过参数之后,这个神经元再也不会对任何数据有激活现象了。;

tanh函数

  • 公式: σ ( x ) = t a n h ( x ) = e x − e − x e x + e − x \sigma (x) =tanh(x)=\dfrac{e^{x} - e^{-x}}{e^{x} + e^{-x}} σ(x)=tanh(x)=ex+exexex.
  • 梯度: σ ′ ( x ) = 1 − σ 2 ( x ) {\sigma }'(x) =1 - {\sigma }^2 (x) σ(x)=1σ2(x).
  • 优点:
    • tanh在特征相差明显时的效果会很好,在循环过程中会不断扩大特征效果.与 sigmoid 的区别是,tanh 是 0 均值的,因此实际应用中 tanh 会比 sigmoid 更好.
  • 缺点:
    • 梯度消失;
    • 激活函数计算量大.

softmax函数

  • 公式: σ ( x ) j = e x j Σ k = 1 K e x k \sigma (x)_{j}=\dfrac{e^{x_{j}}}{ \Sigma _{k=1}^{K}e^{x_{k}}} σ(x)j=Σk=1Kexkexj.

  • 用于多分类神经网络输出.

  • 多分类演示: 如果某一个 z j z_{j} zj 大过其他 z z z,那这个映射的分量就逼近于 1 1 1,其他就逼近于 0 0 0,主要应用就是多分类.
    这里写图片描述

  • softmax与logistic的区别:

    • softmax建模使用的分布是多项式分布,而logistic则基于伯努利分布.
    • 多个logistic回归通过叠加也同样可以实现多分类的效果,但是softmax回归进行的多分类,类与类之间是互斥的,即一个输入只能被归为一类;多个logistic回归进行多分类,输出的类别并不是互斥的,即"苹果"这个词语既属于"水果"类也属于"3C"类别.
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值