Rikka with Subset
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Problem Description
As we know, Rikka is poor at math. Yuta is worrying about this situation, so he gives Rikka some math tasks to practice. There is one of them:
Yuta has n positive A1−An and their sum is m . Then for each subset S of A , Yuta calculates the sum of S .
Now, Yuta has got 2n numbers between [0,m] . For each i∈[0,m] , he counts the number of i s he got as Bi .
Yuta shows Rikka the array Bi and he wants Rikka to restore A1−An .
It is too difficult for Rikka. Can you help her?
Yuta has n positive A1−An and their sum is m . Then for each subset S of A , Yuta calculates the sum of S .
Now, Yuta has got 2n numbers between [0,m] . For each i∈[0,m] , he counts the number of i s he got as Bi .
Yuta shows Rikka the array Bi and he wants Rikka to restore A1−An .
It is too difficult for Rikka. Can you help her?
Input
The first line contains a number
t(1≤t≤70)
, the number of the testcases.
For each testcase, the first line contains two numbers n,m(1≤n≤50,1≤m≤104) .
The second line contains m+1 numbers B0−Bm(0≤Bi≤2n) .
For each testcase, the first line contains two numbers n,m(1≤n≤50,1≤m≤104) .
The second line contains m+1 numbers B0−Bm(0≤Bi≤2n) .
Output
For each testcase, print a single line with
n
numbers
A1−An
.
It is guaranteed that there exists at least one solution. And if there are different solutions, print the lexicographic minimum one.
It is guaranteed that there exists at least one solution. And if there are different solutions, print the lexicographic minimum one.
Sample Input
2 2 3 1 1 1 1 3 3 1 3 3 1
Sample Output
1 2 1 1 1HintIn the first sample, $A$ is $[1,2]$. $A$ has four subsets $[],[1],[2],[1,2]$ and the sums of each subset are $0,1,2,3$. So $B=[1,1,1,1]$
Source
题意:比赛的时候就没看懂题意 赛后补题也没看懂 感觉题目之间量的关系都描述的不清晰 根据多方查询+百度+瞎猜才明白了个大体意思 题目先说了有A这个数组 数组有n个数 n已知 然后这个数组能形成2^n个子集(子集的解释看样例)这2的n次方个A的子集的和的大小为i i在(0,m)内 其中m是确定已知的 然后这些子集和为i的数量又形成了数组B 数组B也已知 现在然你回过头来求A(感觉真的是够绕的……)
解析:
很多个较小的数字随机组合会求出多个很大的数字,所以从B0向Bm推导,在每求出A序列的一部分这个过程中,更新后续的B序列,更新完的B[i]就是 i 在A序列中出现的次数。
分析完后,主要的难点就是怎么去让已求出来的A序列随机组合,更新后续的B序列直接减就可以了。看成01背包问题,让m为背包去装 i,初始值为dp[0] = 1,由于i依次增大,A子集随机组合不会重复
分析完后,主要的难点就是怎么去让已求出来的A序列随机组合,更新后续的B序列直接减就可以了。看成01背包问题,让m为背包去装 i,初始值为dp[0] = 1,由于i依次增大,A子集随机组合不会重复
ac代码:
#include <bits/stdc++.h>
#define N 10010
using namespace std;
int a[N], b[N], dp[N],c[N];
//dp[i]表示:加和为i的子集个数;
int main()
{
int t, n, m;
scanf("%d", &t);
while(t--)
{//先清空所有数组
memset(a, 0, sizeof(a));//用来存储求得的a数组的值
memset(b, 0, sizeof(b));//存储输入的到的b数组的值
memset(dp, 0, sizeof(dp));//用来存储dp过程中规划的过程值
scanf("%d %d", &n, &m);
for(int i = 0; i <= m; i++)
scanf("%d", &b[i]);//读取b数组
dp[0] = 1;//初始化规划数组的初值
int p = 0;//中间变量 做a数组的下标
for(int i = 1; i <= m; i++)
{
c[i] = b[i] - dp[i];//c数组存储A序列中值为i的个数
for(int j = 0; j < c[i]; j++)
{
a[p++] = i; //对A序列赋值
for(int k = m; k>= i; k--) //处理成01背包
{
dp[k] += dp[k - i]; //和为k的A子集个数相加去更新B序列
}
}
}
for(int i = 0; i < p; i++)
{
if(i > 0) printf(" ");//注意规范输出格式 防止re
printf("%d", a[i]);//输出A序列
}
printf("\n");
}
return 0;
}