杨辉三角
目录
一、组合数查找:给定 n 和 k,输出杨辉三角的第 n 行第 k 列的组合数 C(n,k)
二、杨辉三角的性质应用:使用杨辉三角解决组合数、二项式定理等相关数学问题
应用 1:计算 (a + b)^n展开式的系数(难度:★★)
一、题型解释
杨辉三角(Pascal's Triangle)是一个由组合数构成的矩阵。常见的题型包括:
-
基础题型: 输出杨辉三角的前 n行。
- 例如:输入 n=5,输出前 5 行杨辉三角。
-
组合数查找: 给定 n 和 k,输出杨辉三角的第 n 行第 k 列的组合数 C(n,k)。
- 例如:输入 n=5, k=2,输出 C(5,2)。
-
杨辉三角的性质应用: 使用杨辉三角解决组合数、二项式定理等相关数学问题。
- 例如:计算 (a + b)^n展开式的系数。
二、杨辉三角例题问题描述
例题 1:输入 5,输出前 5 行杨辉三角
问题描述:
输入一个整数 n=5,输出杨辉三角的前 5 行。
预期输出:
1 1 1 1 2 1 1 3 3 1 1 4 6 4 1
例题 2:输入 6 和 2,输出第 6 行第 2 列的值
问题描述:
输入 n=6, k=2,求杨辉三角第 6 行第 2 列的元素,即组合数 C(6,2)。
预期输出:
C(6, 2) = 15
三、C语言实现杨辉三角
解法 1:试除法(难度:★)
通俗解释:
通过简单的递推关系,逐行计算并输出杨辉三角。每行的元素由上一行的元素计算而来。
代码实现:
#include <stdio.h>
void generatePascalTriangle(int n) {
int triangle[n][n]; // 创建二维数组存储杨辉三角
for (int i = 0; i < n; i++) {
triangle[i][0] = 1; // 每行第一个元素是1
triangle[i][i] = 1; // 每行最后一个元素是1
for (int j = 1; j < i; j++) {
// 根据上一行的元素计算当前元素
triangle[i][j] = triangle[i-1][j-1] + triangle[i-1][j];
}
}
// 输出杨辉三角
for (int i = 0; i < n; i++) {
for (int j = 0; j <= i; j++) {
printf("%d ", triangle[i][j]);
}
printf("\n");
}
}
int main() {
int n = 5;
generatePascalTriangle(n); // 输出前5行杨辉三角
return 0;
}
代码逻辑解释:
- 二维数组: 用二维数组
triangle[n][n]
存储杨辉三角的每个元素。 - 递推关系: 每行的第一个和最后一个元素都是1,其他元素由上一行的两个相邻元素相加。
- 输出: 双层
for
循环遍历并输出每一行的元素。
解法 2:递归实现(难度:★★)
通俗解释:
递归的方式可以通过分解出最小的子问题,逐步推导出杨辉三角的每个元素。
代码实现:
#include <stdio.h>
int combination(int n, int k) {
if (k == 0 || k == n) return 1; // 基本情况:C(n, 0) = C(n, n) = 1
return combination(n - 1, k - 1) + combination(n - 1, k); // 递归公式
}
void generatePascalTriangle(int n) {
for (int i = 0; i < n; i++) {
for (int j = 0; j <= i; j++) {
printf("%d ", combination(i, j)); // 输出每个组合数
}
printf("\n");
}
}
int main() {
int n = 5;
generatePascalTriangle(n); // 输出前5行杨辉三角
return 0;
}
代码逻辑解释:
- 组合数计算: 使用递归函数
combination(n, k)
根据组合数公式计算每个元素。 - 递归公式: C(n,k)=C(n−1,k−1)+C(n−1,k)。
- 输出: 每行通过调用
combination(i, j)
输出对应的组合数。
解法 3:优化试除法(难度:★★☆)
通俗解释:
使用一个优化的方案,直接计算每行的组合数,减少不必要的计算。
代码实现:
#include <stdio.h>
void optimizedPascalTriangle(int n) {
for (int i = 0; i < n; i++) {
int val = 1; // 每行的第一个元素是1
for (int j = 0; j <= i; j++) {
if (j > 0) {
// 使用上一行的组合数递推计算当前行的组合数
val = val * (i - j + 1) / j;
}
printf("%d ", val); // 输出当前组合数
}
printf("\n");
}
}
int main() {
int n = 5;
optimizedPascalTriangle(n); // 输出前5行杨辉三角
return 0;
}
代码逻辑解释:
- 优化递推: 使用上一行的组合数递推,避免了每次递归的重复计算。
- 递推公式:C(n,k)=C(n,k−1)×(n−k+1)/k。
- 输出: 每行通过递推计算当前行的每个组合数并输出。
四、C++实现杨辉三角
解法 1:面向对象封装(难度:★★)
通俗解释:
通过面向对象的方式封装杨辉三角的生成过程,使得代码更加模块化和可复用。