c/c++蓝桥杯经典编程题100道(13)杨辉三角

杨辉三角

->返回c/c++蓝桥杯经典编程题100道-目录


目录

杨辉三角

一、题型解释

二、杨辉三角例题问题描述

例题 1:输入 5,输出前 5 行杨辉三角

例题 2:输入 6 和 2,输出第 6 行第 2 列的值

三、C语言实现杨辉三角

解法 1:试除法(难度:★)

代码实现:

代码逻辑解释:

解法 2:递归实现(难度:★★)

代码实现:

代码逻辑解释:

解法 3:优化试除法(难度:★★☆)

代码实现:

代码逻辑解释:

四、C++实现杨辉三角

解法 1:面向对象封装(难度:★★)

代码实现:

代码逻辑解释:

解法 2:STL与Lambda表达式(难度:★★☆)

代码实现:

代码逻辑解释:

五、总结对比表

六、特殊方法与内置函数补充

题型二题型三补充:

一、组合数查找:给定 n 和 k,输出杨辉三角的第 n 行第 k 列的组合数 C(n,k)

解法 1:基于阶乘公式(难度:★)

代码实现:

代码逻辑解释:

优点与缺点:

解法 2:递推计算(难度:★★)

代码实现:

代码逻辑解释:

优点与缺点:

解法 3:动态规划(难度:★★☆)

代码实现:

代码逻辑解释:

优点与缺点:

二、杨辉三角的性质应用:使用杨辉三角解决组合数、二项式定理等相关数学问题

应用 1:计算 (a + b)^n展开式的系数(难度:★★)

代码实现:

代码逻辑解释:

优点与缺点:

应用 2:利用杨辉三角计算组合数的其他应用(难度:★★☆)

代码实现:

代码逻辑解释:

三、总结对比表

四、特殊方法与内置函数补充


一、题型解释

杨辉三角(Pascal's Triangle)是一个由组合数构成的矩阵。常见的题型包括:

  1. 基础题型: 输出杨辉三角的前 n行。

    • 例如:输入 n=5,输出前 5 行杨辉三角。
  2. 组合数查找: 给定 n 和 k,输出杨辉三角的第 n 行第 k 列的组合数 C(n,k)。

    • 例如:输入 n=5, k=2,输出 C(5,2)。
  3. 杨辉三角的性质应用: 使用杨辉三角解决组合数、二项式定理等相关数学问题。

    • 例如:计算 (a + b)^n展开式的系数。

二、杨辉三角例题问题描述

例题 1:输入 5,输出前 5 行杨辉三角

问题描述:
输入一个整数 n=5,输出杨辉三角的前 5 行。

预期输出:

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1

例题 2:输入 6 和 2,输出第 6 行第 2 列的值

问题描述:
输入 n=6, k=2,求杨辉三角第 6 行第 2 列的元素,即组合数 C(6,2)。

预期输出:

C(6, 2) = 15


三、C语言实现杨辉三角

解法 1:试除法(难度:★)

通俗解释:
通过简单的递推关系,逐行计算并输出杨辉三角。每行的元素由上一行的元素计算而来。

代码实现:
#include <stdio.h>

void generatePascalTriangle(int n) {
    int triangle[n][n];  // 创建二维数组存储杨辉三角
    
    for (int i = 0; i < n; i++) {
        triangle[i][0] = 1;  // 每行第一个元素是1
        triangle[i][i] = 1;  // 每行最后一个元素是1
        for (int j = 1; j < i; j++) {
            // 根据上一行的元素计算当前元素
            triangle[i][j] = triangle[i-1][j-1] + triangle[i-1][j];
        }
    }

    // 输出杨辉三角
    for (int i = 0; i < n; i++) {
        for (int j = 0; j <= i; j++) {
            printf("%d ", triangle[i][j]);
        }
        printf("\n");
    }
}

int main() {
    int n = 5;
    generatePascalTriangle(n);  // 输出前5行杨辉三角
    return 0;
}
代码逻辑解释:
  • 二维数组: 用二维数组 triangle[n][n] 存储杨辉三角的每个元素。
  • 递推关系: 每行的第一个和最后一个元素都是1,其他元素由上一行的两个相邻元素相加。
  • 输出: 双层 for 循环遍历并输出每一行的元素。

解法 2:递归实现(难度:★★)

通俗解释:
递归的方式可以通过分解出最小的子问题,逐步推导出杨辉三角的每个元素。

代码实现:
#include <stdio.h>

int combination(int n, int k) {
    if (k == 0 || k == n) return 1;  // 基本情况:C(n, 0) = C(n, n) = 1
    return combination(n - 1, k - 1) + combination(n - 1, k);  // 递归公式
}

void generatePascalTriangle(int n) {
    for (int i = 0; i < n; i++) {
        for (int j = 0; j <= i; j++) {
            printf("%d ", combination(i, j));  // 输出每个组合数
        }
        printf("\n");
    }
}

int main() {
    int n = 5;
    generatePascalTriangle(n);  // 输出前5行杨辉三角
    return 0;
}
代码逻辑解释:
  • 组合数计算: 使用递归函数 combination(n, k) 根据组合数公式计算每个元素。
  • 递归公式: C(n,k)=C(n−1,k−1)+C(n−1,k)。
  • 输出: 每行通过调用 combination(i, j) 输出对应的组合数。

解法 3:优化试除法(难度:★★☆)

通俗解释:
使用一个优化的方案,直接计算每行的组合数,减少不必要的计算。

代码实现:
#include <stdio.h>

void optimizedPascalTriangle(int n) {
    for (int i = 0; i < n; i++) {
        int val = 1;  // 每行的第一个元素是1
        for (int j = 0; j <= i; j++) {
            if (j > 0) {
                // 使用上一行的组合数递推计算当前行的组合数
                val = val * (i - j + 1) / j;
            }
            printf("%d ", val);  // 输出当前组合数
        }
        printf("\n");
    }
}

int main() {
    int n = 5;
    optimizedPascalTriangle(n);  // 输出前5行杨辉三角
    return 0;
}
代码逻辑解释:
  • 优化递推: 使用上一行的组合数递推,避免了每次递归的重复计算。
  • 递推公式:C(n,k)=C(n,k−1)×(n−k+1)/k。
  • 输出: 每行通过递推计算当前行的每个组合数并输出。

四、C++实现杨辉三角

解法 1:面向对象封装(难度:★★)

通俗解释:
通过面向对象的方式封装杨辉三角的生成过程,使得代码更加模块化和可复用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值